
MITOCW | watch?v=uqKIHQHmkCI

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high quality educational resources

for free. To make a donation or to view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: All right, let's get started. So welcome to another exciting lecture about security and

why the world is so terrible. So today we're going to talk about private browsing

modes, something that a lot of you probably have a lot of personal experience with.

At a high level, what is the goal of privacy? When security researchers talk about

privacy, what are they talking about?

Well at a high level, they're talking about the following goal. So any particular user

should be indistinguishable from a bunch of other users. In particular, the activity of

a given user should be non-incriminating when viewed in light of activity from a

bunch of other different users. And so, as I mentioned, today we're going to talk

about privacy in the specific context of private web browsing.

And so there's actually no formal definition for what private web browsing means.

There's a couple different reasons for that. So one reason is that web applications

are very, very complicated. And they're adding new features all the time like audio

and video capabilities and things like this. As a result, there's this moving target in

terms of what browsers can do. And as a result, what information they might be able

to leak about a particular user.

And so what ends up happening is that in practice, like with many things involving

browsers, there's this living standard. So different browser vendors will implement

different features, particularly with respect to private browsing. Other vendors will

look and see what vendor X is doing. They will update their own browser. So it's like

a moving target.

And as users grow to rely on private browsing more and more, they end up a lot of

times actually finding bugs in private browsing mode, as I'll discuss a couple

1



minutes later in the lecture. And so private browsing at a high level you can think of

as an aspirational goal. But we as society are continually refining what it means to

do private browsing and getting better in some aspects-- worse in some aspects--

as we'll see a little bit later.

So what exactly do we mean by private browsing? It's tough. But the paper tries to

formalize it in two specific ways. So first of all, the paper talks about a local attacker

on private web browsing. This is someone who is going to possess your machine

after you've finished a private browsing session. And it wants to figure out what sites

you looked at in private browsing mode.

And the paper also talks about web attackers. The web attacker is someone who

controls the websites that you visit. And this web attacker might want to try to figure

out that you are some particular person John or Jane as opposed to some

amorphous user that the website can't tell who they are. And so we'll look at each

one of these attacks in detail. But for now, suffice it to say that if the attacker can

launch both of these attacks-- both a local and a web attack-- that actually really

strengthens their ability to try to dearm us.

So, for example, a local attacker who, for example, maybe knows your IP address

can actually talk to the website and say, hey, have you seen this particular IP

address in your logs. If so, aha! You're looking at the user whose machine I control

right now. So it's actually pretty useful from a security perspective to consider these

local and web attacks. So they are separate things and then to see how they can

possibly compose.

So let's look at this first type of attacker, which is the local attacker. So as I

mentioned, we assume that this attacker is going to control the user's machine post-

session. And so by post-session, I mean that the private browsing activity has

already finished-- the user has perhaps gone off and done something else.

It's not at the computer. And then the attacker takes control of that issue and wants

to figure out what's going on. And so the security goal is that well we don't the

attacker be able to figure out any of the websites that the user visited during this

2



private browsing activity. Now, the reason why the post is actually important there is

because if we assume that the attacker can control the machine before the users

private browsing, then basically it's game over, right, because the attacker can

install a keystroke logger-- the attacker can subvert the binary that [INAUDIBLE] the

browser. The attacker can subert the OS.

So we don't really care about this pre-session attacker. And also note that we're not

trying to provide privacy for the user after the attacker has controlled the machine.

And that's for the same reason. Once the attacker gets to the machine, he or she

can do the same thing that is mentioned-- key logger.

So, basically, once the user leaves the machine, we don't assume any forward

notions of privacy. Does that make sense? It's pretty straightforward. And so you

can imagine that another goal that you might want to try to satisfy here is you might

want to try to hide from the attacker that the user was employing private browsing

mode at all.

Now the paper actually said that's very difficult. This property is often called

plausible deniability. So your boss comes up to you after you use private browsing,

and says were you looking at mylittlepony.com? No, no, I certainly wasn't. And I

certainly wasn't using private browsing mode to hide the fact that I was looking at

mylittlepony.com. So as I said, the paper said it's difficult to provide this property of

plausible deniability. I'll give you some concrete reasons why this might be the case

a little bit later on in the lecture. But that basically is an overview of the local

attacker.

So one question we might want to think about is what kinds of persistent client-side

state can be leaked by a private browsing session? And by persistent, I just mean

stuff that will end up getting stored on the local hard disk, the local SSD or whatever.

So what kinds of state might be leaked if we weren't careful when someone is doing

this type of private browsing?

So one thing you might be worried about is JavaScript accessible states. So

examplees of this includes things like cookies and DOM storage. Another thing you

3



might be worried about-- and this is what most people think about when they think

about what they want to say in private browsing-- is maybe the browser cache. So

you don't want someone to look in the inner cache and figure out here are some

images or HTML files from websites you prefer people didn't know that you visited.

Another important thing is your history of visited sites. So many of your relationships

have been broken when the other goes to the browser-- start typing something into

to the address bar and all of a sudden it auto-completes to something very

embarrassing. So this is one thing definitely you don't want to leak outside the

private browsing session.

You can also think about configuration states with the browsing. And so here you

could think about things like client certificates. You could also think about stuff like

bookmarks. Maybe if you logged into a particular site and the browser offers to

store your passwords in another type of configuration state that you might not want

leaking from private browsing mode.

Downloaded files-- as we'll discuss, this one's a little bit interesting because

downloading a file actually requires explicit user action to download that file. Maybe

we do actually want this stuff to leak outside of private browsing mode. Maybe if you

download something in private browsing mode, it should actually be accessible

when you open the browser or use the machine after that session. So we'll talk

about this a little bit in a second.

And then, finally, during private browsing mode, you might install new plug-ins or

browser sessions. That's another type of state that you might imagine you don't

want to leak outside of private browsing mode. So, basically, current browsing

modes typically try to prevent one, two, and three from leaking outside of private

browser sessions. Right? So there shouldn't be any cookies or DOM stores to get

out of there.

Anything you put in a cache during a private browsing session should be deleted.

And you shouldn't have any history of the URLs that you're using. Typically, four,

five, and six private browsing modes allow to leak outside of a session. And there's

4



some good and some bad reasons why this might be the case.

And as we'll discuss later, we'll see if you allow anything to leak from the private

browsing session, that actually radically increases the threat surface of private

leaks. So it becomes much more difficult to reason about what the security

properties are for private browsing mode. Does that all make sense? Anyone have

any questions? It's pretty straightforward.

So the next thing we're going to talk about very briefly is network activity during

private browsing mode. And what's interesting about this is that even if we cover all

this stuff-- we don't allow private browsing to leak anything from there-- the mere

fact that you're issuing network packet connections leave evidence of what you

were doing.

So imagine when you want to go to foo.com, the website, your machine actually has

to issue a DNS resolution request for foo.com. So even if you don't leave any of this

type of persistent state up there, there may be records in your local DNS cache that

you, in fact, tried to resolve the hostname foo.com.

That's very interesting. So you can imagine that browsers could try to flush the DNS

cache somehow after the private session was over. Now, in practice, that's actually

tricky to do because on many systems, you require administrator privileges to do

that. So it's not clear if you want the browser running as root because browsers, as

we've seen, are somewhat untrustworthy individuals. And also too-- a lot of DNS

flush commands-- they don't actually act per user.

They flush the entire cache, which is typically not what you would want if you're

implementing private browsing mode. You'd want to use a type of surgical thing

where I only want to get rid of foo.com and things that were visited during this

private browsing sessions, but not delete other things. So in practice, that's kind of a

tricky thing to handle.

And another tricky thing to handle, which the paper mentions-- are these things that

I'll call RAM artifacts. So the basic idea here is that during private browsing mode,

5



that private browser has to be keeping some stuff in memory. And so even if the

private browsing mode doesn't issue any direct I/Os to disk-- user rights. The RAM

that belongs to that private browsing tab can still be reflected into the page file, for

example. It can still be reflected into the hibernation file, for example, the laptop.

And so if that state gets reflected into persistent storage, then what may end up

happening is that after your private browsing session is over, the attacker can look

in your page file, for example, and find, for example, JavaScript code that was

reflected to disk or find HTML that was reflected to disk.

So we're going to have a little demonstration of how this might work. So if you see

up here on the screen, I basically loaded up private browsing tabs. And so what I'm

going to do is I'm going to go to some website. So this is for the PDOS group here

at CSAIL.

I've loaded up that page. And then what I'm going to do is use this fun command

called gcore. So, basically, I'm going to take a memory snapshot of this running

page. And so I will do the following magic. So basically there's going to be some

work that my terminal is doing to generate that memory snapshot.

So this takes a little bit of time sometimes. Now, what's happening here. So now

we've basically generated the core file for that private browsing image. So what

we're going to do now is we're going to look inside of that image and see if we can

find any mentions of PDOS.

And so what's interesting is we see a ton of instances of the string PDOS in that

memory image for the private browsing mode. And so what is interesting is we

actually see various prefixes for things. If we look further up, we can see things like

there's full URLs here and things like this. You also find HTML code in there.

So the point here is that if we found all this in the memory of that page, then if this--

if any of those pages got put to disk in the page file, then he attacker could basically

just run strings. So they could do what I just did over the page file and try to find out

what sites that you visited in private browsing mode. So does that make sense?

6



Basically, the problem here is that private browsing modes don't try to obfuscate

RAM basically or encrypt it in any way. And that seems like a pretty fundamental

thing because at a certain point, the processor has to execute on clear text data.

And so this is actually a pretty big challenge.

So does anyone have any questions? Yeah?

AUDIENCE: So one thing is I don't expect my browser to do that. One thing is that these

browsers-- the guarantee that they give you through private browsing-- the example

they give is if you're shopping for something, your layman friend can't go on the

computer and see the things. So can you talk a little bit about what guarantees they

give and if they had to change anything as a consequence of this paper?

PROFESSOR: Yeah, it's very interesting. One thing you can look at is when you open up a private

browsing tab, typically there will be a little blurb that says, hey, welcome to incognito

mode. Here's where we'll help you against. We won't help you if someone is

standing behind you with a rubber hose about to beat you. And so the browser

vendors themselves area little bit cagey about what guarantees they provide.

And in fact, after the Snowden incident, a lot of the browsers actually changed that

splash page because they wanted to actually make it clear that we're not actually

protecting from strong ways with the NSA or something like that. So long story short,

what guarantees are they providing you? In practice, they're providing that weak

thing that you mention there.

It's like a lay person who wanted to see what you were doing afterwards couldn't

figure out what you were doing. And we're assuming the lay person can't run strings

on the page file or things like that. Now, the problem-- there's actually two problems

though. One problem is that first of all, because browsers are so complicated, they

often don't even protect against the layperson.

I can give you a personal example. So a lot of times when you see those ridiculous

ads from "Huffington Post," like, oh, my gosh. It's like puppies trying to help small

puppies go down stairs and things like that. Right? Because I'm weak, I will

7



sometimes hook on those things. But because I don't know want people to know

that, I'll sometimes do that in private browsing mode.

So what will happen sometimes is that sometimes I'll see those URLs will leak into

my URL history like my regular, public mode browser, which is precisely what this

stuff is designed not to do. So one problem is that sometimes these browsers don't

provide protection against the layperson attackers.

The second thing is I think that there are actually a lot of people who would like for

private browsing mode to provide something stronger, particularly with the whole

Snowden thing. I think there is a lot of people increasingly who would like private

browsing mode to protect, for example, against these RAM artifact attacks, even

though they may not be able to technically articulate that goal.

And so actually one of the things I've done while I was here, I got to do some

research in a stronger private browsing mode protection. So we can chat about that

after all. One of the things we learn about all professors is that we will talk about our

research endlessly. So if you want to talk about that for three hours just send me a

calendar request. And we can do that.

So, anyway, this is basically a demonstration. Oh, you had a question?

AUDIENCE: Yeah, about the RAM. So I'm not familiar with how it works exactly. How come a

browser can't at the end of a session, just ask the OS to flush those parts around

that he was using?

PROFESSOR: So we're actually going to get to that topic in a couple of minutes. But you are

correct. At a high level, what you can imagine is that maybe the OS when it, for

example, killed a process, would actually go through all those numbered pages and

write zeros to all those pages. Or you could also imagine that maybe the browser

tried to pin all the pages in memory to prevent anything from getting flushed out at

all.

So there are some solutions that can do that. So hold onto that question for one

second. This is basically an example of how data from RAM can leak onto disk

8



through paging activity. But note that data lifetime is a bigger problem than just in

the context of private browsing.

You can imagine that any programs that deals with, let's say, cryptographic keys or

user passwords will have this problem. Anytime you type in your password to a a

program, the memory page which holds that password can always get reflected to

disk.

So let me show you another example of this. So let's say that we looked at the

following program, which is pretty simple. It's called memclear. So you see here at

the bottom and main, we're just going to read in some secret text file here. And then

we're just going to sleep forever. So what is that Read Secret do? Basically, it

reasons from file.

It's going to print out the contents of that file. And then it's actually going to clear out

the buffer that was used to store that secret information. So getting back to your

issue. So one can imagine the browser, for example, would try to just memset to

zero all the secrets that it encountered when it's just in private browser.

So if we look at the secret files, it's not very fun. It just says, my secrets of in a file.

And then if we run this program, in the background-- so what did it do? So like I

said, it just printed it out. It read that file in, printed out the secret value-- cleared the

memory buffer that it used to print that stuff out. Now it's just sleeping in the

background.

So once again, if we use this fun gcore command, we can take a memory dump of

the memclear program that's running in memory right now. OK, and then if we do--

let's see which ones we're going to look at. So then if we look at-- this guy is the one

we want. And then we do a grep for a secret.

So once again, we see that if look in the RAM image of that running program, we

found instances of both the file name that was read in and also some prefixes of the

string contents of that file, even though we wiped the buffer in the C program itself.

So you might say why did this happen? This seems very, very strange.

9



And the reason is that if you think about the way that I/O works, it's like a layer type

thing. So by the time that the contents of that file get to the program, it's already

gone through, let's say, the kernel memory. It's already gone through maybe like

the C Standard Library to do I/O because that library does buffering and stuff like

that.

And so what ends up happening is that even if you memset the application visible

buffer, there are still instances of secret data lying in many different places

throughout the system. And this is looking at the user mode portion of this

application. So there's probably still data sitting around in maybe like the kernel I/O

buffers or things like that.

So getting back to your question, if you want to do what they call security allocation,

you can't just rely on mechanisms at the application level because there may be

other places where that data lives. So what are some examples of other places

where this data might live? So, for example, it might live in a process memory.

So these are things like the heap and the stack. So when we did that memset inside

of memclear.c, we were basically trying to address this. But what we found out is

that that is necessary, but insufficient to actually clear all instances of that secret

from memory. So where else my RAM artifacts live or secret data persists-- so all

kinds of files-- backups-- SQL write databases.

If at any point, an application takes something in RAM and writes it to one of these

things, then once again, the attacker may be able to recover that after the attacker

controls the disk . As I mentioned, a kernel memory is another common place where

RAM secrets may live because, once again, applications typically do layered I/O in

which each piece of data goes through multiple parts of the stack.

Think of like network transmission, for example. First, the data has to come to some

network buffer that's probably inside the kernel. Then once again, it probably goes

through some buffers inside the C Standard Library. And then finally it will go to the

user mode-- the part of the application that the developer wrote him or herself.

10



So that can actually be a big problem. You can also think too of freed memory

pages as being a place where data can leak. So imagine that your application

allocates a bunch of memory using whatever [INAUDIBLE] or whatnot. And then that

process dies. And the kernel sends out another process but hasn't actually zeroed

out all the physical RAM page.

So what could happen is that when that new process spins up, it could just do a

walk through all this physical RAM pages and use a bunch of memory and just do

the same thing-- do the strange thing-- see if there's anything interesting there. And

then they might be able to get secrets that way.

So there's a lot of ways information is leaked from the kernel. You could also think

about I/O buffers and things like a keyboard from things like the mouse. There's just

a bunch of different factors that data can leak through the kernel.

How might an attacker try to get some of this information? Well, in some cases, it's

just as simple as reading the files-- so just read the page file. Read the hibernation

file and just see what's in there. Some file formats actually embed different versions

within themselves. For example, the way that Microsoft Word used to work is that a

single Word file would actually contain versions for old pieces of data.

So if you could get access to that Word file, you could just sit there through either

format and so step through all the old versions. And so as we have been discussing

in the last couple minutes, security allocation is also a problem. It cannot supported

a full stack. So for example, an older Linux kernel-- when you would create a

directory, end directory, you could leak up to four kilobytes of kernel memory.

Only Zeus knows what's inside that memory. And that's because Linux wasn't

actually zeroing out kernel memory that had been allocated, deallocated, and then

allocated to something else. So as I mentioned before too-- if the kernel doesn't

zero out pages that are given to user mode processes, you can also have user

mode secret leaks through those types of menu pages as well.

Another thing is that-- SSDs-- many of them implement logging. And so in other

11



words, when you send a write to an SSD, oftentimes you are not directly overwriting

data, you're actually writing to a log. And when a piece of data becomes invalid, it

lays away your claim.

So what that means is that if you as the user get unlucky. And you've written a

bunch of data that hasn't been reclaimed by the SSD, then maybe the attacker can

look at that hardware and say, oh, OK, I understand the log format. And even

though technically speaking, this data may be invalid, I can still recover because I

understand how the Flash translation layer works or something like that.

And at a high level, you can also have this problem with stolen or discarded

hardware as well. If you don't use encryption, then a lot of times, you can just take

some disk that you found in a dumpster somewhere-- you understand what the

physical layout is and recover data like that.

So anyway, there's a lot of problems with these RAM artifacts getting stuck in

persistent storage somehow and then being available for an attacker later on. So

how can we fix these data lifetime problems?

So we've already discussed one solution, which is to basically zero out memory

when you're done with it. So whenever you deallocate something, you just go

through. You write a bunch of zeros or some random thing and then essentially hide

the old data from someone else who might come along later.

So does anyone see potential any potential problem with that? One problem you

might imagine is that as with all things in security, people always complain about

performance. And so when you say that you zero out memory, maybe this isn't a

problem if your program is I/O bound. So you're waiting on some slow, mechanical

part of the hard disk or whatnot.

But imagine if your program is CPU bound. And maybe it's very memory intensive

too. So it's always allocating and deallocating data. So maybe zeroing out memory

might be performance cost that you don't want to pay. Typically this isn't a problem

in practice. But as we all know, people love performance. This is sometimes an

12



objection that you'll have with this approach. Another thing you can imagine doing is

that instead of zeroing out memory, you always encrypt data as it goes to stable

storage.

So in a system like this, basically, before the application ever writes anything to disk,

it's actually going to encrypt it before it actually hits that SSD or that hard disk.

Similarly, when the data comes back in from stable storage, you're going to decrypt

it dynamically before you put it into RAM. And so what's interesting about this

approach is that if the key that you use to decrypt and encrypt data-- if you throw it

away, then once you throw it away, you've effectively made that data on disk

unrecoverable by the attacker, assuming that you believe in cryptography.

So this is very, very nice because it gives us this nice property that we don't have to

remember per se all places where you've written this encrypted data. We can just

say why drop the keys? And I'll just treat all that encrypted data as it's something

that I can allocate again. So, for example, if you look at Open BSD, they have this

option where you can do swap encryption.

So you can basically associate keys with various sections of the page file. So it does

this very thing I mentioned. So every time you group the machine, it'll generate a

bunch of new keys. And then when your machine goes down because you shut it

down or you reboot it or whatever, it will basically forget all the keys that it used to

encrypt that swap space.

And then it can basically say now all that swap is available to be used again. And so

because those keys are forgotten, one can assume that the attacker can't look at

the stuff that is in there.

AUDIENCE: What is the [INAUDIBLE]?

PROFESSOR: Ah, yeah, that's a good question. I'm actually not sure what sources of entropy it

uses. Open BSD is pretty paranoid about security. So I imagine it does things like it

looks at let's say the entropy pool gathered from user keyboard input, for example,

and other things like that. Yeah, I'm not actually sure how it drives those keys.

13



But you're exactly right that if these sources of entropy that it uses are predictable,

then that basically shrinks the entropy space of the key itself, which then makes the

key more vulnerable.

AUDIENCE: So with the memory it's capturing [INAUDIBLE].

PROFESSOR: Yeah, so basically, what this model assumes if all we are doing is looking at the

swap encryption, It assumes that the RAM pages for the keys, for example, are

never swapped out. And that's actually pretty easy to do if you're the OS of if you

just pin that page to memory. And this also doesn't help you with someone whose

got pins with the memory bus or someone who can walk the kernel memory page or

stuff like that. So you're right.

AUDIENCE: In terms of browsing, it helps of attackers that come after the fact because if you

have to throw away the key, then after the fact, there is no key to memory.

PROFESSOR: Yeah, that's exactly right. So what's nice about this is that it essentially doesn't

require modifications to applications. Like you said, you can just put any old thing

atop this and get this property for free.

AUDIENCE: Going back a bit-- if you look at the data before [INAUDIBLE] to RAM. How does

that avoid the RAM artifacts [INAUDIBLE]?

PROFESSOR: OK, so if I understand your question correctly, I think you're worried about the fact

that, sure, data is encrypted when it's on disk, but then it actually can sit in clear text

forms somehow in the actual memory itself. So this gets back to the discussion that

we had here. So ensuring that data hit the disk encrypted doesn't actually protect

against an attacker who can look at RAM in real time.

So basically what we're saying is that if you're only worried about this post-session

attacker who can't, for example, look at your RAM views in real time, this works fine.

But you're exactly right that this does not provide, for lack of a better term,

encrypted RAM. And there actually are some research systems that try to do

something like that. It gets a little bit tricky because at some point when you look at

your hardware, your processor, it has to actually do something on real data like if
14



you want to do an ad and you have to pass a clear text operands perhaps.

There are also some interesting research systems which actually try to do

computation on encrypted data. This is mind blowing like "The Matrix." But suffice it

to say that protections that people have for in RAM data are typically much weaker

than what they have for data that lives on stable storage. You got a question?

AUDIENCE: Yeah, but does that [INAUDIBLE] because even though the attacker has post-

session access, that's just post-private mode access. So there could this could still

be a public mode session going on. And the attacker would have access to the

machine, right?

PROFESSOR: So you're worried about if a concurrent--

AUDIENCE: So if you have a public mode tab and you have a private mode tab. You close the

private tab and the public mode tab stays on-- the attacker could still dump the

memory. And the RAM artifacts would be problematic. Is that right?

PROFESSOR: Yeah, interesting-- so we will talk at the end of lecture about an attack which is

somewhat similar. So most of the threat models of private browsing due not assume

a current attacker at all. In other words, they assume that when you're doing private

browsing, there is no other person who have a public mode tab open or anything

like that.

But you are in fact correct that the way that private browsing modes are often

implemented-- let's say you open up a private browsing tab, you close that tab. You

immediately run to go get a cup of coffee. So one attack I will describe is that

Firefox, for example, still keeps statistics about, let's say, memory allocation.

So if the memory for your private tab is actually laid with the garbage collected and I

can basically go to about.memory or whatever and actually see URLs and stuff in

your tab. But yeah, but the long story short, most of these attacker models do not

assume a concurrent attacker at the same time that you're privately browsing. Make

sense?

15



So this is one that you do-- do swap encryption like I mentioned. This is nice

because this gives you some pretty cool security properties without having to

change the browser at all or any of applications running on top of this. And in

practice, the CPU cost of doing this kind of thing is much, much lower than the

actual cost of doing I/O in general, particularly if you have a disk because with disk

you're particularly paying C cost. That's a mechanical cost. This is all processing

cost-- pure computational stuff. So typically this not that big of a performance hit.

Oh, god there's physics here. This is always an adventure. So the next attacker that

we're going to look at is this web attacker that I mentioned at the beginning of

lecture. So the assumption here are that the attacker who controls the website that

the user is going to visit in private browsing mode-- how the attacker does not

control the user's local machine.

And so the security goals that we want to have against the web attackers are two

fold. So first, we don't want the attacker to be able to identify the users. And by

identify with, we just mean we don't want the attacker to be able to distinguish the

user from any other user that happens to be visiting the site.

And you also might imagine that perhaps we don't want the attacker to tell whether

or not we're using private browsing mode. So the attacker can't tell the user

employees private browsing. And so as the paper discusses, defending against the

web attacker is actually pretty tricky.

So what does it mean, for example, to identify different users. Like I said, at a high

level, as you could imagine, the user looks no different than any other users that

visits this site. So you can imagine a web attacker might want to do one of two

specific things. It might want to say, OK, I see multiple people who were visiting my

site in private browsing mode.

You were visitor five, seven, and eight. So in other words, identifying a particular

user within the context of multiple private browsing sessions. The second the

attacker might want to do is actually try to link a user across public and private

mode browsing sessions. So I go to Amazon.com once in public browsing mode. I

16



then go to it again in private browsing mode. Can the attacker actually figure out

that I'm actually the same person through those two visits. Yes?

AUDIENCE: This is all a module of the IP address.

PROFESSOR: Ah, yes, that's exactly right. That is excellent foreshadowing. So right now I'm

assuming that either user employs Tor or uses something like this. So yeah, we're

punting on this whole issue of IP admittedly for now. That's right. So yeah, this

segues very well. So what's an easy way to identify the user, as you suggested, the

IP address.

So it's a pretty high likelihood if you see two visits that are sort of close in time

relatively speaking with the same IP with high likelihood that's probably the same

user. And this in fact the motivation-- one of the motivations for stuff like Tor. And so

we're actually willing to discuss Tor next lecture. So in case you haven't heard of

Tor, it's basically a tool which tries to obscure things like your IP address.

And you could actually imagine layering Tor-- having Tor be the foundation. And

then you put private browsing modes atop that. And that might give you some

stronger properties then you would if you used private browsing modes at all. But,

anyway, so the thing to mention about Tor though is that Tor does provide some

sense of IP anonymity. But it doesn't actually address things like the data secrecy

lifetime issues or things like that. So Tor-- perhaps you can think of it as maybe

necessary, but insufficient for a full implementation of private browsing mode.

And so what's interesting too is that even if a user employees Tor, there are still

ways that a web server can identify the user by looking at the unique characteristics

of that user's browser. So this is our final demo for today. So let's see here. So

going to get rid of this guy. And then let's see. I am going to go to this site called

Panopticlick.

Some of so you heard of this. It's run the EFF. The basic idea is it is going to try to

identify you the user by looking at various characteristics of your web browser. So I'll

show you exactly what I mean. So I want to go-- the URL is very long. This is very

17



stressful for me to type in. So please don't just if it doesn't go through. Let's see.

Panopticlick-- did it work? Yes, OK.

So I am going to go to this website. And it's run by the folks at EFF. And I say, OK,

test me. So what this is doing is it's basically running a bunch of JavaScript code,

maybe an applet-- maybe some Java. And it's trying to fingerprint my browser. And

it's trying to figure out how much unique information does it have.

And so-- let me increase the font here. So, for example, one thing it looks at is it

looks at you see here what are all the details of the browser plugins that I'm

running. So basically it'll run code in it's web page that looks and sees do I have

Flash installed? What version of Flash? Do I have Java installed? What version of

Java?

So you can see that these are all-- they can't even fit on the tree at one time. These

are like all the various plugins and ridiculous formats that my browser supports.

Now, the high level-- this should be troubling to you if you're a security person. Am I

actually actively using all of these things at a given time? This gives me nightmares.

So what ends up happening is that web servers-- this web attacker-- they can hunt

code like this. And they can figure out what are all the plugins that you're looking at.

Now if you look at these two columns to the left, what are they? So you see up here.

It says bits of identifying information. And then one in x browsers has this value.

So, for example, if we look at a plugin, it's saying there is basically-- it's probably this

is the number that's more interesting. It's no longer right. It's saying that 1 in

approximately 280,000 browsers has this exact set of plugins. So that's actually a

pretty specific way to fingerprint me. It's saying very, very few people who have this

exact set of plugins and configurations.

So as it turns out, they're right. I am quite unique. But this a problem from the

security perspective. So look at this. The screen size and the color depths for my

machine-- 1 in-- what is this? 1.5 million. That's actually pretty shocking. So there's

only one person in a sample of 1.5 million people who have this particular screen

18



image.

So these things-- they are additive in some sense. So the more fingerprints you

have, the more easy it is for the attacker to figure out exactly who you are. And so

note this was done purely from the server side. I just went to this web page. And I

just did this. And this is what it got to. One second-- I want to show one more thing.

This was done in private browsing mode.

And let's see here. I will open up a regular version of Firefox. Then I run this up

again. So note that now I'm in a public mode browser. Before I was in private mode.

Now I am public mode. So what you'll see is that when we look at the browser

plugins, the extent to which I can be fingerprinted is essentially the same.

So it's going to be a few plugins that may or may not load depending on the

vagaries of how privacy mode is implemented. But still, look at that. I'm still very

easy to fingerprint. And in fact, if you look back at this guy again-- that screen size

and color depth. I didn't change that actually between the two-- between public and

private browsing mode.

So that ability to fingerprint there is basically the same. This is one reason why it's

so difficult to protect yourself against this web attack because browsers themselves

reveal so much information about you just from their configuration.

AUDIENCE: I am curious the screen size and color depth thing. How does it do that? How is that

unique? How many screen sizes and color depths are there?

PROFESSOR: Well, I think it's actually hiding some of the magic that it's using to figure out what

that is. So at a high level, how do a lot of these tests work? So there's some parts of

your browser environment that are testable purely by JavaScript code. So you can

imagine that you can essentially have JavaScript code, which looks over the

properties of the window object, which is like a global JavaScript manuscript and

sees how do you define this weird widget? How do you define this weird widget?

And if so, that my count your plug-ins, lets say. Pages like this also typically take

advantage of the fact that Java applets and Flash objects can look at all kinds of

19



more interesting stuff like the fonts that are available on your machine and things

like that. So as to the particular screen size and color depth thing-- I think-- don't

quote me on that. But I think what ends up happening is it will try to run an applet,

let's say, that will actually try to query your graphics card or whatever are the

graphics interfaces in Java and poke for different aspects of it.

So I think it's actually more than just screen size and depth. They condense it for

size as that. So at a high level, that's how all these tricks work. So you see a bunch

of information-- you can snarf up through JavaScript. Then you run a bunch of

plugins, which can typically access more stuff and see what they can snarf up. And

then you see what's going on.

Does it all make sense? Yeah, this is basically why it's very difficult to protect

against a web attacker. And in particular, getting back to the discussion we had

about Tor, right, even if I had gone through Tor-- so you'll note the IP address-- you

don't see it up here. And so you can imagine that yeah, maybe this thing would

actually look at your IP address.

But the thing is like even if I didn't know what IP you were coming from at all, I can

do all these things. It's pretty maddening. It's pretty insane. So there are some

products out there that tried to do things like imagine that you had a proxy out in the

cloud that all your web traffic went through. And then imagine that proxy tried to

present a canonical version of a browser runtime.

And imagine that it would always try to emulate, let's say, Firefox v 10.7. Then it

would try to send back the data that it rendered as Firefox v 10.7. So some people

would try to attack this. It's sort of tricky.

AUDIENCE: [INAUDIBLE].

PROFESSOR: I am not--

AUDIENCE: Is that Tor distributions? Is that paired with virtual machines? [INAUDIBLE].

PROFESSOR: I see-- so the basic idea-- is it a similar idea to what we were just talking about?

20



AUDIENCE: Yes, [INAUDIBLE].

PROFESSOR: Yeah, so I never heard of that one. I have heard of some of these other projects.

I'm imagining there's actually some trickiness in getting systems like this to be

efficient a lot of times because particularly imagine if you have something that's

interactive. It's like you want to play a game or something like that. It's a little bit

awkward to send my mouse click to some proxy. That proxy is then somehow going

to [INAUDIBLE].

AUDIENCE: Let me clarify the first station virtual machine actually runs [INAUDIBLE] Firefox. In

the proxy it's known as a Tor.

PROFESSOR: Ah, it's just a Tor proxy. So if it's a Tor proxy, sure, that's one thing. Then the only

overhead there you have to pay is the regular Tor overhead of going through all the

onion route. Yeah, so I was talking there are systems-- let's ignore the IP anonymity

for a second because they basically try to say you have your own very

fingerprintable browser on your own machine. You don't want to expose that to the

web server.

So essentially you go through a proxy, which you think of it all the time like a

headless Firefox let's say of some canonical version. The web server thinks it is

interacting with this thing. So if I go load this site, I am perceived by the web server

as Firefox 10.7 or whatever. If you go there, you are also perceived as Firefox 10.7.

Then behind the scenes its' spitting out HTML and stuff like that it collected from the

proxy. So those two things are orthogonal.

AUDIENCE: But it seems like you don't need a proxy for this. You could have browser support

for this, right? Meaning the Tor browser does this already by trying to appear as the

most generic version of Firefox.

PROFESSOR: Yeah, so this is true. Although, I think a problem with a lot of those things that even

if you try to lock yourself into one version, there's still a lot of things that can

fingerprint it. So I think with the Tor distribution, what they often do is they say, we

control what's in the Tor distribution. So if we all go down to the Tor distribution,

21



then forshizzle, we're both going to get Firefox with the same Java version-- the

same so on and so forth.

AUDIENCE: Well, it's more than that though. They return screen sizes that are the most

common screen sizes whenever you clear the screen.

PROFESSOR: That's all true. Yeah, so one thing that's interesting to look at though-- the Tor team

that also put out-- the people who do the bundle-- they'll often put out reports about

what data still gets leaked. So stuff does still get leaked out. But you're right. If you

could-- the high level of that goal is very reasonable.

It's saying that if we all agreed to download the same distribution and to then not

trick it out by adding plugins or stuff like, then you're exactly right. That'd work great.

Any other questions? Yeah, so that is it for demo time. And there's more physics.

This must have been a riveting previous class. So we will ignore that for the

moment. Let's see here.

So where were we? So what is the high-level goal of privacy? And you can think of it

as what's your anonymity set if you're a user? So in other words, how many-- what's

the size of people-- the number of people that you could be confused for-- you

could be mistaken for by an attacker. And so what the browser fingerprinting stuff

shows is that oftentimes a web attacker can narrow you down to a very, very tight

demographic without controlling anything on your local machine whatsoever.

So that's actually little bit frightening to know. So you might want to think about how

can a web attacker determine if you're using private browsing mode? Maybe that's

[INAUDIBLE] for some reason. So in the paper they actually describe an attack that

uses link colors. So remember, in private browsing mode, the browsers isn't

supposed to keep track of the history of the sites that you visit.

And so in the paper, the authors describe an attack in which essentially the

attacker-controlled page creates an iframe to some URL that the attacker controls

and loads that inside the attacker page. And then it basically looks at the link colors.

It creates a link to that page-- that iframe it just created-- and then sees that the link

22



color for that link is the visited color.

So see it as purple versus blue. And the idea that if you do this test in private

browsing mode, then presumably the link colors should stay like the unvisited color

because the browser is supposed to be forgetting about all this kinds of stuff. So

that's the attack they describe in the paper. What's interesting is that this attack

actually doesn't work anymore.

So we actually discussed this a couple of lectures back. So this attack that the paper

describes is the browser history sniffing attack. So as we discussed a couple of

lectures ago, JavaScript code now does not expose correct link colors basically to

JavaScript . And it's precisely to prevent these types of attacks. So that particular

part of the paper is outdated.

AUDIENCE: What does it point to that browsers now also show links as purple in private

browsing mode and turn blue again when you exit.

PROFESSOR: Yeah, it's a bit weird, yeah. They implemented that attack-- the defense-- I think

before a lot of the private browsers like a popware. So now they do this additional

thing too. The long story short, the attack they describe in the paper doesn't work

because of some of these browsers sniffing defenses. But you can still imagine that

there may be ways for the web attacker to figure out if you are using private

browsing mode.

So for example, when you do private browsing mode, any cookies that you got from

public mode should not be sent during private mode. So in other words, if I go to

Amazon.com in public mode, I generate some cookies. Then I go to Amazon.com in

private browsing mode. When I contact Amazon.com in private mode, those public

mode cookies should not be sent. That can actually act as the sign to the web

attacker that you actually are using private mode.

AUDIENCE: This is also now you're using the canvass in both of these events, right? So you

need to know the IP address.

PROFESSOR: Yeah, that's right.

23



AUDIENCE: So that link that you were targeting with the link color would be on a per IP basis.

And you would have to rely that the user first visited it as a public mode, and you

protect it.

PROFESSOR: Ah, so the link-- so the link attack you can actually do in the context of a single

page. So imagine that I, the web attacker, construct single page. I, the attacker,

have JavaScript that creates an iframe to foo.com like this. So that iframe will load

the contents of that page. And then I, the attacker, in the parent frame can then

create a link element and then try to look at the color. This worked four years ago.

So in that case, it doesn't rely on the user having explicitly visited that iframe page

at all because I, the attacker, can create that in the context of the page. I have

gotten [INAUDIBLE]. Any other questions? So yeah, so you can maybe think about

how cookies can reveal public and private browsing modes and things like that.

So one thing we might think about is how we can provide a stronger privacy

guarantee for private browsers? And for the sake of this discussion, let's just ignore

IP addresses for now because as we'll discuss next lecture, we can used Tor to

maybe help with some of the privacy of IP addresses. So one thing you can imagine

doing is you can imagine using VMs in some way to help provide stronger private

browsing guaranteed-- so VM level privacy.

And so the basic idea is that you want to run each private session inside of a

separate VM. And then when the user is done with that-- so is finished with the

private browsing session, you basically delete VM after that session is done. So

what's the advantage of this?

Well, what's nice about this is presumably you can get some stronger guarantees

about what privacy properties you can provide to the user because, presumably, the

VM has a pretty clean interface to the I/O path of the underlying post-OS. So you

can imagine that maybe you combine this VMs into let's say some type of a secure

swap solution like Open BSD has-- give us another encrypted disk type thing.

So you can imagine, OK, we have a very clean separation of VM up here and all the
24



I/Os that are generated down here. And so that gives you stronger guarantees than

what you can get from the browser, which wasn't designed from the ground up to

think very carefully about all the I/O paths and what secrets might leak when it was

in storage.

So yes, this provides what's nice about this-- strong guarantees. And, also, what's

nice is it doesn't require any changes to your applications-- that is to say to the

browser. You take your browser, put it inside one of these VMs-- then everything

gets better all magically. It's not location change. So what's bad about this-- I'll use

an unhappy face to demonstrate that. So what's bad is first of all, it's heavyweight.

And by heavyweight, I mean that time you want to spin up one of these private

browsing sessions, you have to spin up a whole VM. And that can actually be pretty

painful. So perhaps users are going to get upset because it's going to take them

long time now to launch these private browsing sessions.

And the other problems to is this solution actually has bad usability. And the reason

I say that is because now it's actually difficult for users to do things like take files that

they've saved in private browsing mode and then take them to the rest of their

computer-- any bookmarks that they generate during private browsing mode that

who they actually do want to persist will be difficult to get those at the end. It can be

done. But there's a lot of friction here. So that's the bummer.

So another thing that you might imagine doing is something that looks like approach

number one. But we actually implement it inside of the OS themselves instead of in

a virtual machine. So the basic idea here is that you can imagine that each process

could potentially run in a privacy domain.

So basically, the privacy domain access the collection of OS global resources that

process uses. And so the OS tracks all that kind of stuff. And then once the process

dies, essentially the OS goes through and looks at all the things that are in that

privacy domain set. And then purely deallocate all those resources. And so the

advantage of this over the VM is that it is lighter weight because if you think about it,

the VM is essentially agnostic to all the OS state and all the application state that is
25



actually being used to run.

So the result-- it probably does more work than the OS would have to do because

the OS presumably knows all the points at which the private browser would be

touching I/O, and talk to the network, and stuff like that. So maybe it even knows

things like you can actually clear the DNS cache selectively, for example.

So you can imagine that it's much easier to spin these things up-- these privacy

domains-- then to tear them down. However, the sad thing, at least with respect to

the virtual machine solution, is that it's harder to get this right. So I just described

the VM approach as being headway because it's essentially agnostic to everything

that's running inside the container.

But what's nice about that is that allows the VM approach to only focus on a few

low-level interfaces. And it can focus on those things. For example, the interface the

VM uses to write to disk, then you can have high confidence that it's actually

managed to contain everything.

Whereas with the OS-- if you think the OS is going to interpose on individual files

with system interfaces-- perhaps individual network interfaces and stuff like that-- it's

much more complicated to find all of those points at which data can leak if you're

going to do that at the OS level. So does that all make sense? Why is this physics

everywhere? Ah, god, I'm being tested.

Those are basically some approaches we can use to provide potentially stronger

privacy guarantees than what's implemented in private browsers right now. So one

question you might have is can we still be an anonymized user if the browser--

sorry, if the user is employing one of these more powerful solutions-- if the user is

surfing through VM or surfing one of these privacy domains in the OS-- can we still

figure out who they are? And the answer is, yes.

So maybe the VM is unique for some reason. And so similar to how we were able to

fingerprint browsers using that Panopticlick website, maybe there's something

unique about the way that the VM would be set up that allows to fingerprint it. And it

26



may in fact be the case that maybe the virtual machine monitor or the OS itself is

unique in some ways. That would allow a web attacker to figure out who the user

was.

And so one cute example of this is TCP fingerprinting. So what's the big idea behind

this. So as it turns out, the specification for the TCP protocol actually allows some of

the parameters for the protocol to be set by the implementation of the protocol. So,

for example, TCP allows implementers to choose things like initial packet size-- the

things that are sent out the first part of the TCP connection-- it allows implementers

to choose things like that initial time to live in those packets.

And so you can imagine, and in fact, you don't have to imagine that this is actually

the truth. You can get off-the shelf tools like InMap, for example, that they actually

can tell what operating system you're running with high probability just by sending

you packets. They'll send these very carefully crafted packets. And they will look

and see things like here's what the TTL was or here's what the packet size

distribution was-- here's what the TTP sequence number was. And they basically

have a database to fingerprint.

And they say, OK, if the return packet has this, this, and this characteristic, then the

table says that you're probably running for some reason Solaris. You're running

Mac. You're running Windows or whatever. So even if we use one of these stronger

approaches for private browsing with a VM or an OS, you still may be able to run

one of those TCP fingerprinting attacks and learn a lot about a particular user.

And one thing that's also interesting to note is that even if we use one of these more

powerful techniques to try to protect the user, the user is still shared across both the

public and the private browsing session. Still uses-- visibly using the machine. So

why is it interesting? Well, it's interesting because you yourself by way that you use

computers, may leak information about yourself.

So, for example, as it turns out, users have unique keystroke timing. So if I look at--

if I give everyone in this class the same thing to type in -- the quick, brown fox--

whatever that nonsense is-- and I actually look at the inter-key press timing, we'll all

27



have these unique distributions that can potentially be used to fingerprint us.

Another thing that's interesting is that users have unique writing styles. So there's

this branch of security that is called stylography. And the basic idea here is to figure

out if I am an attacker, can I figure out who you are just by looking at writing

samples from you? So imagine that for whatever reason you're hanging out on

4chan-- don't hang out on 4chan-- and I want to figure out if you've actually, in fact,

been hanging out on 4chan.

So perhaps what I can do is I can look at a bunch of different posts from 4chan.

Maybe I can cluster those posts into sets of posts that I think look stylistically the

same. And then what I can do is I can find things that you've written publicly where

you're actually attributed as the author. I'll look at you homework assignments or

papers that you've written or things like that. And I'll see do you match any of these

clusters from these 4chan comments.

And if so, them maybe I can say maybe send you a stern note. Talk to the parents

that their kid has gone off the beaten path. Get off of 4chan. So the reason is I

would like to look at this thing called stylography. It's actually quite interesting. Does

anyone have any questions about that? Excellent.

So we discuss how we might be able to use VM or modified operating systems to

provide private browsing support. And so you might wonder, OK, well, then why

don't browsers require users to do one of these things-- to have one of these tricked

out VMs or tricked out OSes? So why do browsers take it upon themselves to

implement all this stuff?

And so the main reason is deployability. So in fact, browser vendors typically do not

want to ask their users to do anything special to use the browser besides install the

browser binary itself. This is similar to the motivation of the native client. So if

Google wants to add these cool future to end users' computers. But it doesn't want

to force users to install some special version of Windows or Linux or whatever. So

Google basically says, we'll take care of this ourselves.

28



Then another reason is actually usability. So a lot of these VM and OS-level

solutions in private browsing-- as we've discussed, they make it more difficult for

users to persist state from private browsing sessions that they do actually want to

persist like downloading files like bookmarks they create and things like that.

So basically the browser vendors say, well, if we implement private browsing modes

ourselves, we can actually allow users to do those things. We can allow users to

take downloaded files from private browsing mode and take them to the rest of the

machine. So that seems nice at first. But note that, of course, that allowing users to

export some type of private state actually opens up a lot of security vulnerabilities. It

makes it very difficult to analyze security properties that result in private browsing

modes actually provide.

And so in the paper, they try to characterize the different types of browser states

that can be modified and how current private browsing modes actually handle the

modifications at stake. So the paper describes this taxonomy of browser state

changes. And so there are four things in the taxonomy. So one type of state change

is initiated by the website itself. And there's no user interaction.

And so examples of this type of state change think about stuff like when a cookie

gets set-- when something gets added to the address history of the browser--

maybe within a browser cache or something. And so from this type of state,

basically, private browsing mode says this state is a private browsing mode session.

But it basically is going to be destroyed when that private browsing session

concludes. And so the intuition behind this is that because there is no user

interaction in creating this state, then perhaps the right thing for the browser to do is

assume that the user wouldn't want that to persist. So another type of browser state

change is initiated by the website that the user is visiting. But there is some type of

user interaction involved in the state change.

So an example of this might be the user installs client certificate or maybe there's a

safe password. So the user tries to login to something. And the browser says very

helpfully would you like to save this password? And then if the users says, yes, then

29



these types of things, say passwords, can actually be used outside of the private

browsing mode.

And so it's a little bit unclear in principle what the policy for this should be. So what

ends up happening in practice is that browsers typically allow statements in this

category that set in private browsing modes to persist outside of that private

browsing mode under the intuition that the user did have to say yes or no. If the

user said, yes, then maybe the user is smart enough to understand that they save

some password for some unsavory site and someone comes on later and figures

that out, that's the users fault-- not the browsers fault.

So it's a little unclear what the best policy is here. But in practice, this type of state

change is allowed to persist outside of private browsing mode.

So there's another type of state change, which is purely initiated by the user. And so

here you can think about things like setting a bookmark or maybe downloading files.

And so the story for this state is similar to the story for the state up here. So

basically because the user was explicitly involved in the creation of that state.

Private browsing modes typically say, OK, it's OK to persist these types of changes

to the outside world outside of private browsing mode.

Then there's some sets of state which are actually unrelated to any particular

session at all. So this is stuff, for example, like an update to the browser itself-- the

actual binary that constitutes the browser. And so the way the browser vendors

think about this state is this state is essentially assumed to be part of the single,

global state that's available to both public and private browsing modes.

And so eventually, if you look at it, there's actually quite a lot of states that will

actually potentially leak outside of private browsing mode, particularly if there's user

volition involved. So it's interesting to think about is this the right trade-off between

security and privacy? So what's interesting is that-- so the paper actually says that

it's difficult to sort of prevent a local attacker from detecting whether or not you've

been using private browsing mode. And the paper was a little bit vague about why

this might be the case.

30



So one reason why this might be the case is because some of this state that

actually leaks from private browsing mode to public browsing mode, essentially it

can actually contain hints the state was generated in private browsing mode. So for

example, on Firefox and Chrome, when you generate a bookmark in private

browsing mode, that bookmark has a bunch of metadata with it.

So for example, the time that it was visited and things like that. So in many cases,

that metadata will be set to zero or some null value if that bookmark was generated

inside of a private browsing mode. So then later on if someone controls your

machine, and they look at your bookmark information-- if they see this metadata set

to this zero and null value, they can say, aha, that bookmark was probably

generated in private browsing mode.

So one thing to think about is typically we talk about browser security. We talk

about, OK, what can people do with JavaScript or HTML or CSS. One thing you

might want to think about is, well, what can people do with plug-ins or extensions?

So in the context of private browsing, plug-ins and extensions are quite interesting

because they're not constrained in most cases by the same origin policy. They can

constrain stuff like JavaScript.

And what's interesting is that these extensions and plug-ins typically run with very

high authority. Loosely speaking, you can think of them as like kernel modules.

They implement new features directly inside the browsers themselves. And so that's

a little bit problematic because these plug-ins and extensions are often developed

by someone who is not the actual browser vendor.

So what that means is that someone is trying to do something nice and provide you

with this nice value add in this browser plug in or extension. But that implementor

might not fully understand the context, the security context, in which that extension

runs. So that extension may not implement private browsing mode semantics. Or it

may try to implement it to do it in a bad way.

And so as I'll describe in a couple of minutes, that's actually bad from the security

31



perspective because that means if we add some of these new plug-ins or

extensions, you now can't strongly reason about what the resulting [INAUDIBLE]

are. Now, one thing that's nice is that plug-ins are actually probably going the way of

dinosaurs. So as you probably know, HTML5 adds all these new features like the

audio tag and the videos tag, and stuff like that.

And so a lot of these new features were designed to allow people to get away from

plug-ins-- to get away from Java-- to get away from Flash . So when people in the

past wanted do things like have rich 2D or 3D graphics, they'd have to do something

like Java or Flash. Now they can use things like Web GL. They can used things like

the canvass tag.

So probably plug-ins are going away. In fact, the IE team for example, has said that

in a couple years they don't think anybody's going to be using plug-ins whatsoever.

It's all going to be HTML5 type stuff. In fact, if you go to YouTube-- I don't know if

you've noticed. But a lot of times if you go to the video, the video is actually using--

it's called an HTML5 player. They've gone away from their standard plugin-based

one.

So that's very interesting. You can already see sites trying to move towards this new

plug-in world. However, extensions are probably here to stay for at least the

foreseeable future. So it's still important to get those right. So, yeah, the last thing

that I wanted to discuss is a paper was written in 2010-- that's four years ago.

So you might think to yourself what's changed about private browsing? And so at a

high level, private browsing mode is still tricky to get right. And the reason why it's

tricky to get right-- a couple of reasons. So first of all, because the browser

[INAUDIBLE] is still growing because of things like this HTML5 stuff.

The interface, which needs to be secure with respect to private browsing mode, that

frontier is always getting bigger. And also a lot of times developers-- they are more

focused on to adding cool, new features. And then the privacy implications get taken

up later on. And so in practice, it is still tricky to produce a private browsing mode

which catches all potential data leaks.

32



So one example, there was a Firefox bug fix from January, 2014. And the basic idea

is there is this extension-- it's called pdf.js is basically a way to look at PDF files

using pure HTML5 interfaces. And so as it turns out, this extension was allowing

public mode cookies to leak when it was being used in private browsing mode.

The idea is that let's say that you visit some websites in public mode. You want to

download some PDF. Maybe you get some cookie that comes back. You come back

in private browsing mode. You want to view another PDF from that site. And then

pdf.js is actually sending those public mode cookies along with any private mode

things that were set.

And so in the lecture notes, I actually have a link to the bugzilla discussion about the

particular bug. So the fix was actually quite simple once they realized this was the

problem. Basically they just have to add a check that says morally speaking, am I in

private browsing mode? If so, do some things-- and one of those things is not from

the cookies.

So the fix here is actually quite simple. But the challenge was that once again,

people added this cool, new extension. But it hadn't really crossed their mind to do

this full, invasive audit. And say where are all the places at which private browsing

with semantics might be impacted by this particular plug-in.

There's another interesting one too-- this is actually the discussion we had about 30

minutes ago about what happens if you have private tabs and public tabs where you

open at the same time or very close to each other. There is actually a bug in

Firefox. I think that's from-- let's see here-- yeah, 2011, which is still unfilled. And

the basic idea is that if you go to a task in private browsing mode-- OK, you go do

some stuff. You then close that tab.

You then open a new public mode tab. And you go to about:memory. So as you

probably know, a browser is defined as fake URLs and telling information about how

the browser works. So you go to the private tab, close it up, then go to

about:memory. This is going to tell you information about all the objects that Firefox

33



has allocated.

So what would happen is that window objects are typically deallocated-- they are

[INAUDIBLE] in Firefox. So what ends up happening is that when you open up that

new public mode tab, go to about:memory you can actually find information still

about that private mode window such as things like a URL, for example, that will tell

you how much memory to allocate and all that kind of stuff. And it's all in the plain

text.

And so that's an example of how these very subtle interfaces and browsers that can

actually leak a lot of information. And so it's very interesting. If you look at the

bugzilla discussion, it's actually pretty interesting to see how these problems get

resolved in real life. And I put a link it so there is a message that this book was

deprioritized when it became clear that the potential solution was more involved

than originally anticipated.

So that's a pretty long discussion about how do we fix this. And it involved changing

the way that garbage collection is done. And it's very tricky because if you invoke it

too often then it gets performance. So there's this long discussion about this. So

they said, "It was deprioritized when it was clear the solution was more involved

than anticipated." And then in response, a developer said, "That is very sad to hear.

This could pretty much defeat the purpose of things like session store for getting

about closed private windows."

So the developers about this stuff. Like in the case of the session store, this is

storage feature for HTML5-- they had gone to a lot of trouble to make it delete

things that belong to these closed private windows. But, basically, what this bug did-

- it still-- it basically still left information about that stuff sitting around in memory

somewhere.

So long story short, it's still very difficult to get private browsing right. And in fact,

there are actually off-the-shelf forensics tools that you can download that will

actually look for evidence of both public and private browsing modes. So if you're an

attacker, you don't have to roll your own custom tool.

34



There's this one they call Magnet. I think it's an internet evidence finder. You just go

get this thing. It'll do things like look through your page file for RAM artifacts. And it

will give you a very nice GUI. It'll say here are the images I found. Here are the

URLs. So in practice, these private browsing modes still do leak some information.

All right, so next section, we'll talk about Tor.

35


