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ARMANDO

SOLAR-LEZAMA:

All right. So good morning, everyone. I'm Armando Solar-Lezama. I'm giving the

lecture today on symbolic execution. How many of you here are familiar with what

the term is or have heard about it before? We want to get a sense of audience. OK.

So let's see. I dropped this machine a little too many times and it takes a while to

boot up.

So symbolic execution is really the workhorse of modern program analysis. It's one

of those techniques that has really broken out of the research bubble and actually

made it into a very large number of high impact applications. For example, today at

Microsoft there's a system called SAGE that runs on a lot of important Microsoft

code ranging from PowerPoint to Windows to actually find security problems and

security vulnerabilities.

There's a lot of that academic projects that have made a lot of real world impact by

discovering important bugs in open source software, for example, by relying on

symbolic execution. And the beauty of symbolic execution as a technique is that

compared to testing, for example, it gives you the ability to reason about how your

program is going to behave on a potentially infinite set of possible inputs. It allows

you to explore spaces of inputs that would be completely unfeasible and impractical

to explore by, say, random testing, or even by having a very large number of testers

banging and the code.

On the other hand, compared to more traditional static analysis techniques it has

the advantage that when it discovers a problem it can actually produce for you an

input and a trace that you can run on your real program and execute that program

on that input. And you can actually tell that it is a real bug. And you can actually go

and debug it using traditional debugging mechanisms. And this is particularly
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valuable when you're in an industrial development environment where you probably

don't have time to go looking after every little problem in your code.

You really want to be able to tell the difference between real problems versus false

positives, for example. So how does it work? So in order to really understand how it

works it's useful to start by looking at just normal execution, right? If we think of

symbolic execution as a generalization of traditional, plain execution, it makes sense

to know what this looks like.

So I'm going to be using this very, very simple program as an illustration for a lot of

what I'm going to be talking about today. So what do we have here? Again, it's a

very simple piece of code, just a couple of branches and here we have an assertion,

assert false. And we want to know could that assertion ever be triggered. Is it

possible? Is there some input where that will make that assertion fail?

And in this case because the assertion is just saying, assert false, what I'm really

asking is, is there an input that can reach that point in the program? So one of the

things I can do is I can try just testing. I can go in and run this code with a concrete

input. Right? So let's say that I start with an input where x is 4 and y is 4. And initially

t is going to have the value 0 right after I declare it.

So before we go with normal execution, what are some of the important point here?

The fact that we need some representation of the state of the program, right?

Whether we're doing normal execution or whether we're doing symbolic execution,

we need to have some way to characterize the state of the program. And in this

case, this is such a simple program that it doesn't use the heap. It doesn't use the

stack. There are no function calls.

So the state can be fully characterized by these three variables together with

knowledge of where in the program I'm at, right? So if I start executing with 4, 4,

and 0, so when I get to this branch, is 4 greater than 4? Clearly not. So then I'm

going to be executing t equals y. So now after I do that t is no longer 0. It now has

the value 4. Right? So that is now the state of my program. And then I can evaluate

this branch. Is it the case that t is less than x? No. Right? So we dodged the bullet.
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We did not get an assertion failure. There was no problem in this particular

execution. Right?

But that doesn't really tell us anything about any other execution. All we know is that

under the input x equals 4 and y equals 4, the program is not going to fail. But it tells

us nothing about what's going to happen on the input [? 2, 1, ?] for example. Right?

And in this input you see that this input is actually going to follow a different path in

the execution. This time we're actually going to see that t equals x. We're actually

going to set t equals 2x.

So after executing these t will be equal to 2, but is there any problem in this

execution? Will there be an assertion failure on this input? Well, so let's see. So if t

is 2. And x is 2. Is t less than x? No. So it looks like we dodged a bullet again. Right?

So here we have two concrete inputs. And they told us that on these two concrete

inputs the program didn't fail. But that really doesn't tell us anything about any other

input.

And so the idea with symbolic execution is we want to go beyond these single input

executions. And we want to be able to actually reason about the behavior of the

program on very large sets of inputs. In some cases, infinite sets of possible inputs.

And the basic idea is as follows. So for a program like this, just like before the state

of the program is characterized by the value of these three different variables.

Right? x, y, and t together with knowing where in the program I'm at.

But now instead of concrete values for x and y what I'm going to have is a symbolic

value, just a variable. A variable that allows me to give a name to this value that the

user is going to provide at the input. So what that means is that the state of my

program is no longer a mapping from variable names to concrete values. It's now a

mapping from variable names to these symbolic values. And a symbolic value, you

can essentially think of it as a formula.

So in this case the formula for x is just x. And the formula for y is just y. And for t, it's

actually the value 0. We know that for every input, doesn't matter what you do. The

value of t after the first statement is going to be 0. But now here's where it gets
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interesting. So we get to this branch right here that says, if x is greater than y, we're

going to go in one direction. If it's less than or equal to y, we're going to go in the

other direction.

Now do we know anything about x and y? What do we know about them? We know

their type, at least. So that's a start. So we know that they're going to be ranging

from min int to max int, but that's about all we know about them. And it turns out that

this information that we know about them is not sufficient to tell us which direction

this branch might go. This branch could go either way.

And so now there are many things and we can do, but what's one possible thing

that we could do at this point? Make a wild guess.

AUDIENCE: [INAUDIBLE].

ARMANDO

SOLAR-LEZAMA:

Yeah. We could follow both branches. We could flip a coin and pick one branch and

take that. So if we want to follow both branches we have to follow one and then the

other one, right? So let's say we start with this branch. Right? So now we are at this

branch. So what we know is that if we make it to this branch, in this branch t is now

going to have the same value as x. And we don't know what that value is going to

be, but we have a name for it. It's this script letter x. Right? So that's the value of t

on that branch.

If we were to take the opposite branch then what would happen? The value of t

would be something different, right? In that branch, the value of t would be the

symbolic value y. So that means that when we get to this point in the program, what

is the value of t? Well, maybe it's x. And maybe it's y. We don't know exactly which

one it is, but why don't we give it a name? Let's call it t0. And what do we know

about t0?

What are the cases where t0 is going to be equal to x?

AUDIENCE: [INAUDIBLE].

ARMANDO That's right. So essentially what we know is that if x is greater than y, then this
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SOLAR-LEZAMA: implies that it's x. And if x is less than or equal to y that implies that it's y, right? And

so we have this value that we've defined. We'll call it t0. And it has these logical

properties. So at this point in the program we actually have a name for the value of

t. It's t0. Right? And so what did we do here? We took both branches of this if

statement. And then we computed the symbolic value by looking at under what

conditions am I going to take one branch, under what conditions am I going to take

another branch? And then looking at what values am I going to be assigning to t on

both of those branches?

So now it comes to the point where we have to ask, can t be less than x? Right? So

what is the value of t? The value of t is now t0. So what we want to know is, is it

possible for t0 to be less than x? Right? Now remember the first branch we hit we

were asking a question about x and y. And we knew nothing about x and y. The only

thing we knew about x and y was that they were of type int.

But now with t0 we actually know a lot about t0. We know that t0 is going to be equal

to x in some cases. And it's going to be equal to y in some cases. And so this now

gives us a set of equations that we can solve for. So what we can say is, is it

possible to satisfy t0 less than x knowing that t0 satisfies all of these properties?

Right?

So, in fact, we can actually express this as a constraint where we say, so is it

possible to have t0 less than x? And to have x greater than y implies t0 equals x.

And x less than or equal to y imply t0 equal y. Right?

So what we have here is an equation that if that equation has a solution, if it's

possible to find a value of t0, and a value of x, and a value of y that satisfies that

equation, then we know that those values, when we plug them into our program,

when the program executes, it will take this branch. And it will blow up when it hits a

assert false. Right?

So what did we do here? So we're executing this program, but instead of keeping

our state as a mapping from variable names to values, what we're doing is we're

keeping our program as a mapping from variable names to these symbolic values.
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Essentially, other variable names. And in this case our other variable names are the

script x, script y, t0, and on top of that, we have a set of equations that tell us how

those values are related. So we have an equation that tells us how t0 is related to x

and y in this case.

And solving for that equation allows us to answer the question of whether this

branch can be taken or not. Now just looking at the equation, can this branch be

taken or not? Right? So it looks like the branch cannot be taken. Why not? Because

we're looking for cases where t0 is less than x, which means that if you're in this

case, then clearly that's not going to be true. Right? So that means that when x is

greater than y, then it cannot happen because t0 will be equal to x. And it cannot be

equal to x and less than x at the same time.

And what about in this case? Can it happen in this case? Can t0 be less than x in

this case? No, it clearly cannot, right? Because in this case we know that x is less

than y. And so if t0 is going to be less than x, then it would also be less than y. But

we know that in that case t0 is exactly equal to y. And therefore, again, that case

cannot be satisfied. So what we have here is an equation that has no solution. It

doesn't matter what values you plug into this equation. You cannot solve it and that

tells us that no matter what inputs we pass to this code, it will not go down this

branch.

Now notice that when making that argument here I was basically alluding to your

intuition about integers, about mathematical integers. In practice we know that

machine ints don't quite behave exactly the same way as mathematical ints. And

there are some cases where laws that apply to mathematical ints don't actually

apply to ints in programs. And so when reasoning about this we have to be very

careful that when we're solving these equations, we're keeping in mind that these

are not the integers as they were taught to us in elementary school.

These are 32-bit integers that the machine uses. And there are many cases and

many instances of bugs that arose because programmers were thinking about their

code in terms of mathematical integers, and not realizing that there are things like
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overflows that can cause the program to behave differently for mathematical inputs.

But the other thing is what I've described here is a purely intuitive argument. I walk

you through the process of how to do this by hand, but that's by no means an

algorithm. Right?

The beauty of this idea of symbolic execution, however, is that it can be coded into

an algorithm. And it can be solved in a mechanical way, which allows you to do this

not just for ten line programs, but actually for million line programs. And it allows you

to actually take this reasoning, and the same intuitive reasoning that we used in this

case to talk about what happens when we execute this program on different inputs.

And scale that reasoning to very large programs. Are there any questions so far?

Yes?

AUDIENCE: What if a [INAUDIBLE] are not supposed to take an input? [INAUDIBLE].

ARMANDO

SOLAR-LEZAMA:

Oh. That's a very good question. Right, so, for example, let's say we have the

program that we have here, but instead of these being t equals x, here we will say t

equals x minus 1. Right? So now all of a sudden, intuitively you can see that now

this program could blow up, right? Because when the program takes this path then t

will indeed be less than x. And you will indeed fail here. Right?

So what will happen to a program like this? How will our symbolic state look like?

Right? So in this case, so t0, when x is greater than y, what is t0 now going to be

equal to? It's not going to be equal to x. It's going to be equal to x minus 1, right?

And so that means that, so, this condition now has a satisfying assignment. Right?

Now this can fail, but what if you go to the developer and say, hey, this function can

blow up whenever x is greater than y.

And the developer looks at this and says, oh, I forgot to tell you. Actually, this

function can never be called with parameters where x is greater than y. Right? That

the client that calls this function is just a quick function that I wrote for something.

And it has this branch for some historical purpose. But actually this function will

never get called with x greater than y. You're like, well, now you tell me. Right?
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But the way we can think about this is that there is an assumption that x is going to

be less than or equal to y, right? This is sometimes referred to as a precondition or

a contract for this function. The function is promising to do something, but only if

you satisfy this assumption. And if you don't satisfy the assumption, the function

says, I don't care what happens. I only promise that I'm not going to fail when this

assumption is satisfied. And it's the responsibility of the color to make sure that this

condition is never violated, right?

So how would we encode that constraint when we're solving for equations? Well,

essentially what we have is we have this set of constraints that tell us whether this

branch is feasible. And on top of the constraints that we already have we need to

also make sure that the precondition, or the assumptions are satisfied. Right?

And now we want to ask, OK, so can I find an x and a y that satisfy all of these

constraints together with these constraint that I have on the input, with these

properties that I know that the input must satisfy? And once again you can see that

this constraint of x less than or equal to y is the difference between this constraint

being satisfiable, and this constraint once again becoming unsatisfiable.

That's a very important issue when dealing with analysis, especially when you want

to do this marginally at the level of individual functions at a time. It makes sense to

know what the assumptions are that the programmer had in mind when writing this

function, because if you don't know what those assumptions were you could say,

yeah, here are some inputs where it's going to fail only for the programmer to

dismiss myth that by saying, oh, but those inputs are not possible, or those inputs

can never happen.

Other questions? All right. So how do we do this in a more mechanical way? So

there are two aspects to this problem. Aspect number one is how do you actually

come up with these formulas? So in this case it was kind of intuitive how we came

up with the formulas. where we were just working through it by hand, but how do

you come up with these formulas in a mechanical way?

And aspect number two is once you have the formulas, how do you actually solve
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them? How can you actually solve these formulas that describe whether your

program fails or not? And I'm actually going to start with that second question.

Given that we're able to reduce our problem to these formulas that involve integer

reasoning that involved in the case of programs generally you care about bit vector

reasoning. [INAUDIBLE] programs, a lot of times, you care about arrays. You care

about functions.

And you end up with these giant formulas. How in the world do you actually solve

them in a mechanical way? And a lot of the technology that we're talking about

today, and the reason why we're actually talking about it as a practical tool, have to

do with tremendous advances in solvers for logical questions. And in particular,

there is a very important class of solvers called satisfiability modulo theory solvers,

often abbreviated as SMT. But a lot of people in the community would argue that

the name is not a particularly good name, but it's the one that everybody uses and it

has stuck.

What you need to know about these SMT solvers is that an SMT solver is an

algorithm essentially that given a logical formula will give you one of two things. it

will give you either a satisfying assignment to the formula, or it will tell you that the

formula is unsatisfiable. And that there is no possible assignment to the variables in

that formula that will satisfy these constraints that you defined.

Now in practice, if this sounds a little bit scary and a little bit like magic, it is a little bit

scary. A lot of the problems that these SMT solvers have to solve are NP-complete

in the best case. All right? the nice ones are NP-complete. The hard ones can get

much harrier than that. So how can we have a system that relies as its primary

building block on solving NP complete PSPACE-complete problems? And still have

something that works in practice?

And part of the answer is that for a lot of these solvers there is a third thing that they

can tell you, which is, I don't know. And so part of the beauty of these solvers is that

for practical problems, even for very, very large and complicated practical problems,

they are still able to do better than simply telling you, I don't know. They are still able
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to give you either a guarantee that this set of constraints is unsatisfiable or an actual

satisfying assignment that tells you exactly what the answer is. Yes?

AUDIENCE: [INAUDIBLE] For example, [INAUDIBLE] specification I don't think you said anything

about how many bits are used to store an integer. [INAUDIBLE]

ARMANDO

SOLAR-LEZAMA:

That's a very good question. And that really has to do with how you define your

constraints, right? So If you look at our simple example from the beginning, in this

case, we assume that these were the integers as learned in elementary school. And

that we completely decided to ignore overflow errors. If you care about overflow

errors, if overflow errors are actually essential to the kind of bugs you're trying to

find, this would not be a good way to set up the problem.

What you need is to represent these not so fast integers, but as bit-vectors. And the

moment you represent them as bit vectors you have to have a bit width in mind. And

this goes back to what this modular theory aspect in the solver means. What this

modular theory aspect means is that the solver is actually extensible with different

theories.

The most popular theories are the theory of bit-vector which are fixed length bit-

vectors. That means that if you're interpreting your formulas in this theory of fixed

length bit-vectors you have to fix the length of the bit-vectors. And you have to

explicitly specify that these are going to be 32-bit bit-vectors, or 8 bit bit-vectors, or

64-bit bit-vectors.

AUDIENCE: So if you wanted to make the the bit symbolic [INAUDIBLE], like this is an x bit, is

that--

ARMANDO

SOLAR-LEZAMA:

So there's another theory which is called the theory of arrays. And we'll talk a little

bit more about it, where unlike the bit vector theory, which is designed to be for fixed

length things the theory of arrays is meant to be for collections where you don't

actually know the size a priori.

Now in practice nobody uses the theory of arrays to model integers, for example,

because it's too expensive. It becomes way more expensive to reason about when
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you don't know what the bound is. So generally people use fixed length theory of

bit-vectors when reasoning about integers or characters even.

Another very common theory is the theory of actual integer arithmetic, and in

particularly linear integer arithmetic. This is a theory that people like a lot because it

can be reasoned about very, very efficiently, but it's not particularly good when

you're reasoning about programs, because in general you really do care about

overflow issues. But it's actually very widely used for many, many things.

The other theory that you're likely to see people using is the theory of uninterpreted

functions. So what does it mean, the theory of an uninterpreted function? It means

that you have a formula where somewhere in your formula you know that you're

calling a function, but you know nothing about that function other than the fact that it

is a function, that if you give it the same inputs you get the same outputs in return.

And it turns out this is very, very useful sometimes when trying to reason about

things like if you floating point code, modeling, sine, cosines, square roots can be

very messy and expensive, but you can say, look, I don't actually care about what

the sine function does. I don't care about what its output is. All I know is that if I call

the sine function in many different places with the input I will get the same output.

And that's enough for me to reason about my code.

And so the most common ones you will see when analyzing real systems are bit-

vectors to deal with integers, and logs, and pointers. Actually, pointers are often

represented with integer because you're generally not going to be doing

complicated bit whittling on pointers. Sometimes you will and then you can't use

integers anymore. So OK.

So that's all well and good. That's what an SMT solver can do for you. How does it

actually work? What's inside it that makes it work? And SMT solvers actually rely on

our ability to solve SAT problems, on our ability to take problems involving just

purely Boolean constraints and Boolean variables, and telling us whether there is an

assignment to these Boolean variables that is satisfiable or not.
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And this is the kind of thing that for many, many years people in undergrad have

been taught that actually this is an NP-complete problem. The moment something

reduces to SAT you know you shouldn't do it, but it turns out that we actually have

some very, very good SAT solvers out there. Probably most of you even built one as

part of 6005. Am I right? Or some of you did.

So I'll tell you the basic idea behind how SAT solvers work. And the basic idea is

that you take all your constraints on your Boolean variables and you put them into a

database. And what is a constraint? Is this too small or can people in the back read

this?

AUDIENCE: Too small.

ARMANDO

SOLAR-LEZAMA:

Too small? OK. Let's see if we can make this bigger. Is this a little bit better?

AUDIENCE: [INAUDIBLE].

ARMANDO

SOLAR-LEZAMA:

OK. Well, here's what I'll do. I will annotate and I will narrate it as I go. And I'll post

the slides later. So people can see what it says. So what we have here in SAT

problem is that we have all these variables that represent Boolean unknowns, right?

We want to know is it possible for x to be true, and y to be true, and z to be true at

the same, for example. Right? And these are our unknowns.

And all the constraints are in conjunctive normal form. What that means is all our

constraints are of the form either x1 is true, or x2 is true, or x3 is true, for example.

Right? So what we have is we have all our constraints in this form and some of

them might say, well, either x1 is true, or x2 is false, or x3 is false. Right? So we

have constraints. All our constraints are of this form.

And you probably remember from discrete math that any Boolean formula can be

represented in conjunctive normal form. And it has the added benefit that it's

actually very, very easy to translate from arbitrary representations of a formula to

these conjunctive normal form formula, which means whatever representation

you're using to represent Boolean formulas, you can very easily convert it to this
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format.

So what we have is we have a database with lots of constraints of this form. And

what SAT solver is going to do is going to pick one of these variables at random.

Let's say it's going to pick x1. And it's going to say, why don't we set x1 to true? I

don't know anything about this problem. Might as well try selling it to true. And then

what will happen is you'll have some constraints that mention x1 and let's say that

you have a constraint that says either x1 is false or x7 is true. Right?

So if you know that x1 is true and you know that either x1 is false or x7 is true, what

do you know about x7?

AUDIENCE: [INAUDIBLE].

ARMANDO

SOLAR-LEZAMA:

Yeah. It has to be true. Right? Because otherwise this constraint would not be

satisfied. And so now you've propagated this assignment from x1 to x7. And let's

say now you pick some other random variable. You say, well, what about x5? Why

don't we try x5 being true? Right? And now let's say that you have a constraint that

says, well, either x7 is false, or x6 is true, or x5 is false. Right?

So I have x5 being true and I have x7 being true. So that means x6 now has to be

true. Right? Because otherwise this constraint would be violated. And so from that

the system infers, OK. So x6 has to be true. And it keeps at this process essentially

trying out assignments. And then looking at all the available clauses, and looking at,

hey, are there are other things that are implied by the assignments that I have so

far?

And following those implications until one of two things happens. Either you keep

following implications and trying random things and eventually you have set a value

to every single variable without ever running into a contradiction. And then you're

done. Right? You found a satisfying assignment, or what can happen is you run into

a contradiction. You run into a place where there was a clause that forced x4 to be

true, except there was another clause that forced x4 to be false.

And if there's one rule of Boolean algebra that everybody should know, is that you
13



cannot have a variable be true and be false at the same time. Right? And so what

that tells you is you've run into a contradiction. You clearly did something wrong in

one of these random assignments that you were trying. So now let's analyze this

contradiction. Let's figure out what were the assignments that led to this

contradiction.

And based on the assignments that led to that contradiction, let's come up with a

new conflict clause that summarizes that contradiction. So in this case, what would

happen is that you have x1 being false, and x5 being false. And x9 being false,

right? So essentially what this is saying is that based on what I learned from these

random assignments I discovered that one of these things has to be true, that it

cannot be the case that x1 is true, and x5 is true, and x9 is false. That cannot

happen.

And I know that cannot happen because when I tried that things blew up. I ended up

with a contradiction. And so what SAT solver is doing is trying random assignments,

propagating them through. When it runs into contradictions it's analyzing the set of

implications that led to that contradiction. And summarising that in a new constraint

that will make sure that it never runs into this contradiction again, that it never runs

into this particular problem again. Other questions? OK.

So so far so good. So we can't really think of the SAT solver as just a black box that

given a Boolean constraint it can either say, no, this Boolean constraint is

unsatisfiable, or it can say, yeah, here's a satisfying assignment to that Boolean

constraint. So SMT solvers are built on top of SAT solvers. And what they're able to

do is they're able to combine the power of the SAT solver to solve these NP-

complete SAT problems with domain specific reasoning to reason about the

different theories that are supported.

So to give you an idea of how it works, and this is going to be a fairly high level, but

to give you an idea of how it works let's say that you have a formula like this, right?

So you say x is greater than 5 and y is less than 5. And either y is greater than x or

y is greater than 2. Right? So is that satisfiable? Can we find a satisfying
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assignment for that?

So what an SMT solver can do is separate out the part of this formula that requires

domain reasoning, that requires reasoning in the theory, in this case, of integers.

With the part of this formula that is just the Boolean structure. So if you separate the

Boolean structure here, essentially what you're saying is that there's some formula,

F1 and some formula F2, and either F3 or F4. Right?

And now this is a purely Boolean problem, right? It's just a problem of can I find a

satisfying assignment for that? Is there a satisfying assignment for that? And, again,

this is just a Boolean formula. Goes to a SAT solver and the SAT solver can say,

yeah. I can find a satisfying assignment for this. And I can find a satisfying

assignment by making this true, and this true, and this true. Right? It's a satisfying

assignment for the Boolean formula.

So now we have a question that we can go and ask the domain specific solver. In

this case just a linear arithmetic solver. So we can go to the linear solver and say,

hey, so the SAT solver claims that this is a reasonable assignment, that if I can

make that assignment work, then my formula will be satisfied.

So I can go and say, well F1 was actually this, and F2 was this, and F3 was this. So

I can ask a theory solver, is it possible to get an x and a y such that x is greater than

5, y is less than 5, and y is greater than x? Right, so now this is a question purely

about linear arithmetic. There's no Boolean logic involved. And what's the answer?

No. Right? And there are traditional methods to solve these kinds of your problems.

You could use the simplex method, for example, to solve systems of linear

inequalities. There's lots of methods that you can use to solve systems of linear

inequalities. The point is the theory solver knows about all of those. And the theory

solver can say, no. This will not work. This is an assignment that will not work. And

so the theory solver can now go back to the SAT solver and not just tell the SAT

solver, hey, that thing that you did, that didn't work.

But it can also give more of an explanation. So in this case, what you can conclude
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from the fact that this didn't work is that actually in addition to satisfying this formula

you also want to satisfy the fact that I cannot have F1, and F2, and F3, right? My

theory solver has told me that these three things are mutually exclusive. I cannot

satisfy all three of them together.

And so now that's a piece of information that I can go back to the SAT solver and

ask the SAT solver, hey, can you give me a solution that satisfies not only the

constraint that you had in the beginning, but also this new constraint that the theory

solver discovered? Right? So now is there some other assignment that satisfies now

both of these constraints?

AUDIENCE: [INAUDIBLE].

ARMANDO

SOLAR-LEZAMA:

Yeah. So there's an assignment where this becomes false. And this becomes true.

And that's an assignment that satisfies the constraint on the top. It satisfies the

constraint on the bottom. And so once again that's an assignment that leads to a

new constraint. So this constraint now goes away. We don't care about it any more.

We have a new constraint that we can ask our theory solver, hey, it this possible?

And in this case the theory solver says, yeah. That actually is possible. You can

make y equal 3 and x equal 6. And it works. Right?

And so now you have an assignment that satisfies the formula in the theory and that

satisfies the Boolean structure behind this assignment. And with that the system can

come back and tell you, yeah. Here's an assignment that satisfies all your

constraints.

And so it's this interaction back and forth between the theory solver and the SAT

solver. And really the ability to be able to reason about very, very large and very

complicated Boolean formulas. That's what makes symbolic execution possible.

So now that we have that the next question is, so how do we go from a program to

a constraint that we can give to an SMT solver? Yes?

AUDIENCE: Sorry for going back.
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ARMANDO

SOLAR-LEZAMA:

Sure.

AUDIENCE: [INAUDIBLE] previously. But could you run me again the whole issue of constructing

the SMT statements? Is it an NP-complete or is it not? [INAUDIBLE].

ARMANDO

SOLAR-LEZAMA:

So the problems that the SMT solvers are solving, those are NP-complete problems

in the best of cases. So SAT itself is the canonical NP-complete problem, but a lot of

solvers these days even include support for some theories that are outright

undecidable. So--

AUDIENCE: So how do you approach that in your system?

ARMANDO

SOLAR-LEZAMA:

Well, at the end of the day what you get is you're going to create a constraint from

this program. You're going to give it to the SMT solver. And the fact that these are

NP-complete problems, or the fact that they're unsatisfiable, what it means is that if

you're lucky, you will get an answer in seconds.

And if you're not lucky, then it might take longer than the age of the universe for the

thing to give you an answer.

AUDIENCE: OK. How often do you run into cases where your system just flat-lines and says,

sorry, I just can't figure this out yet? Has that ever happened or is that just--

ARMANDO

SOLAR-LEZAMA:

Yes. Yes, it does happen. And a big part of the engineering of these kind of tools is

making sure that this happens as infrequently as possible. And part what makes this

work at all is that we're not solving random SAT problems. We're not solving

completely random bit-vector problems. We're solving problems that have a certain

structure to them that a person was able to look at it and least have some

confidence that this worked, right? Build some argument in their head for why this

worked.

And so what the solvers are trying to do is essentially exploiting that structure. And

taking advantage, for example, the description that I gave you of what the SAT

solver is doing internally, that's taking advantage of the fact that, yes. Your problem
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might have a million Boolean variables, but actually most of those variables are very

tightly dependent on the values of each other. So the number of degrees of

freedom in the problem is actually much smaller than what the million variables

would suggest.

AUDIENCE: So you're saying is that this isn't an exam question. This is real life. And someone

built this system. It was supposed to work and make sense. So it's probably not

going to be one of those wildly bizarre theoretical [INAUDIBLE].

ARMANDO

SOLAR-LEZAMA:

That's right. And in practice what happens and when you use this tool is the thing is

you always do is set timeouts. So generally, what happens is because it's

exponential, exponential doesn't mean that you can't do it. Exponential just means

that there's a brick wall, that before that brick wall things will work, and in fact, they

will work really fast. Right? The exponential works in both ways.

Yes, when you're going out then things are growing very quickly, but when you're

going toward smaller problems, or simpler problems things are also getting faster

very, very quickly. So in general what that means is that lots of problems finish very,

very quickly. And then some problems timeout. And the key is to engineer things in

such a way that among the problems that finish quickly are actually problems of

practical use. Or problems that will actually point you to security vulnerabilities in

your system, will point you to bugs, will point you to a path that you maybe haven't

explored before, or inputs that will take you down paths that you hadn't explored

before.

AUDIENCE: Thanks.

ARMANDO

SOLAR-LEZAMA:

Other questions? All right. So we know how to go from a formula, from a set of

constraints, to an answer that will either say, yes, this formula has a solution. And

here's a solution, or no, this formula is unsatisfiable. There is no input that satisfies

this. So now how do we get a formula from a program?

So one of the things that you have when you're doing symbolic execution is that

when you get to a branch and you don't know which direction the branch is going to
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go. Now there are two possibilities that you can do in that case. One is to do what

we did in the early example, which is just to say, I'm going to take both branches at

the same time. I'm going to collect what happens in mode's branches, merge at the

end.

That is a strategy that is often used when you're trying to get very strong

guarantees in general. But it's a strategy that doesn't work too well with modern and

SMT solvers. So often people prefer to do one path at a time exploration. And what

that means is that you're going to pick a path down your program. And then you're

going to create a formula for that path. So you're going to ask, fine me an input that

goes down this path and that satisfies my constraint, or that violates my property,

that goes out of bounds in my buffer, or that causes a null pointer error.

And then if you can't find one then you try a different path and a different path. And

you do these path explorations one at a time. So that's the strategy that we're going

to talk about now. It's a little bit easier to describe how to do it. So let's say that we

have a problem like this. So, by the way, I switched representations. So I'm not

representing the program as a block of code and representing it as a control flow

graph. Is everybody here familiar with a control flow graph? Or is anybody here not

familiar with a control flow graph? It's just a representation of a program that makes

branches more explicit.

So let's pick a path. And so let's say that we care about this path, right, a path that

starts at the beginning and takes us all the way down to the point where we are

asserting false. And we want to know, is this path feasible? Could the program go

down this path? So as we're going down this program we're going to keep two

things.

We're going to keep an environment that keeps track of the symbolic values of the

different variables. And in addition to that, we're going to keep around an

environment for constraints. And these constraints are essentially going to keep

track of all the relationships between these variables as well as any assumptions,

whether they were assumptions that were made at the beginning, or assumptions
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that come from the branches that you are taking.

So in this case, when we start down this path we get to t equals 0, so our state is x,

y, and 0. And so far we have no constraints because we didn't have any constraint

in the beginning. So now we're going to take this branch and, again, because we've

made a decision that we're going to go down the path to your right, then we know

that this path will only happen when?

AUDIENCE: [INAUDIBLE].

ARMANDO

SOLAR-LEZAMA:

That's right. So we get our first constraint that says, x is greater than y. Right? So

now down here we're looking at t equals y. Now in this case because we're going

only one path at a time we don't actually need to introduce a new variable for t

necessarily. We can just say, OK. t is equal to y. So that means that t is no longer 0.

It's now y. Right?

And then keep going. We get to this point. Now we hit another branch. What's a new

assumption that we have to make if we're assuming that we went down this path?

Just t less than y, right? And what is t? Right.

So in fact if we look up t, so t has the value y. We look up y. y also has the value of

y. So this constraint actually translates to y less than y. So what does this tell us? It

tells us that in order to make it to this point, in order to make it to a assert false, all

of those things have to hold. Can they hold? Clearly not. Right? y less than y alone

is already sufficient for things not to hold.

And so that tells us immediately that this is unsatisfiable. And this is often known as

a path condition. This is a condition that has to be true in order for the program to

go down that path. And so we know that this path condition cannot be satisfied. And

therefore, that it's impossible for the program to take this path. So this path is now

completely eliminated. We know that this path cannot be taken. And, in fact, so this

constraint we're actually going to just keep them around as the condition itself. All

right?

So what about a different path? So now we're trying this path. So what would be the
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path condition for this? So, again, our symbolic state starts with t equals 0, and x

and y equals to just the variables x and y. And now how does the path constraint

look like in this case? So by the time we get here how does the path condition look

like?

AUDIENCE: [INAUDIBLE].

ARMANDO

SOLAR-LEZAMA:

Right. So in this case [INAUDIBLE] this is true and this is false. So in this case it

says, OK. x is greater than y. And we are setting t to be equal to x. So then when we

get here we have x is less than y. Right? And once again it's very clear that this path

condition is unsatisfiable. Right? We cannot have x greater than y and x less than y

at the same time. There's no assignment to x that will satisfy both of those

constraints.

So what that tells us is, again, that this other path is also unsatisfiable. And now at

this point we've actually explored every possible path in our program that could lead

us to this condition. So we can actually establish and certify that there is no possible

path that will lead to an assertion failure. Yes?

AUDIENCE: The way you just presented it, it makes it look as if you would explore every possible

branch. I mean, one of the advantages of symbolic execution is that you're trying to

prevent [INAUDIBLE] a need of exploring all possible [INAUDIBLE] exponential. So

how are you avoiding that over here?

ARMANDO

SOLAR-LEZAMA:

That's a very good question, right? So in this case essentially what you have is you

have a trade off between high symbolic and how concrete you want to be. Right? So

in this case we are not as symbolic as the first time around when we were visiting

both branches at the same time, but in exchange for that our constraints became

very, very simple. Right? So the individual path by path constraints are very simple,

but you have to do this over, and over, and over again to explore all the different

branches.

And there are exponentially-- all the different paths. And there are exponentially

many paths in a program. Now there are exponentially many paths, but for every
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path in general, there's also an exponentially large set of inputs that could go down

that path. So this already gives you a big benefit because instead of having to try

every possible input you're only trying every possible path. But can you do better?

And this is one of the areas where there's been a lot of experimentation in the area

of symbolic execution. When you do path by path reasoning? When do you do all

paths at the same time? And one of the things that you saw, for example, in the [?

Clee ?] paper is a set of heuristics, and a set of strategies they used to make the

search tractable.

For example, one of the things that they do is that they are exploring path by path,

but they're not exploring completely blindly. And they are also checking the path

conditions after every step. So that, for example, if here instead of just assert false,

if this were a very complex program tree, control flow graph. You don't wait until you

get to the very end to check whether the path is feasible. The moment you get here

you know that this path is unsatisfiable and you never go down this direction. You

always go in the other direction.

So pruning the paths early helps cut down a lot on the experiential blow up. And

exploring the paths intelligently helps a lot in preventing blow up. A lot of the

practical tools that are used today, some of the things that they will do is they will

actually start with some random testing to get an initial set of paths. And then they

will start looking for paths in the neighborhood of those paths. They will start asking

questions like, hey, the random execution went down this branch. What if I flip this

branch? What if I flip this branch? What if I flip this branch? What happens in those

paths?

Can be particularly useful, for example, if we have a good test suite. And you run

your test suite and you find, OK, there is this piece of code that nothing in my test

suite exercised. So what you can do is you can take the path that got closest to

exercising that, and then ask, hey, can I change this path so that it goes down this

direction instead?

And so in general, the moment you try to do all paths simultaneously the constraints
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start becoming intractable. And it's the kind of thing that you can do if you're doing

one function at a time. For example, if you're doing one function at a time then it is

generally feasible to explore all the paths in a function together. If you're trying to do

larger units, then generally you have to go with path by path exploration. Are there

other questions? Yes?

AUDIENCE: You referenced how [INAUDIBLE]. How does it do that again? What's the

[INAUDIBLE]?

ARMANDO

SOLAR-LEZAMA:

So the most important one really is this idea that for every branch, you check your

constraints to check whether that branch can actually go both ways, because if it

cannot go both ways then you save a lot just going in this direction of where it can't

go. Beyond that I don't remember the specific strategy that they use for searching

paths that are more likely to give good results.

But pruning is really, really important. OK. So far though we've been talking mostly

about toy code in the sense that it's only integer variables, branches, very simple

stuff. Right? What happens when you have a program that is more complicated?

And in particular, what happens when you have a program that involves the heap?

Right?

So the heap has historically been the bane of all program analysis, analysis that

were so clean and so elegant in the days of Fortran, completely blow up when you

try to run them on a C program where you're allocating memory left and right. And

you have aliasing. And you have all the messiness that comes with dealing with

program allocated memory. And with pointers and pointer arithmetic. And this is one

of the areas where symbolic execution really shines in the ability to actually reason

about these kinds of programs.

So how do we do it? Right, so let's forget now for a moment about branches, and

control flow. We have a trivially simple program here. All it's doing is it's allocating

some memory. It's zeroing it out. It's getting a new pointer y from the pointer x. It's

writing something into y. And then it's checking, hey, is the value stored at pointer y

equal to the value stored at pointer x? And just from your basic knowledge of C you
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could see that, no. Right, that this assertion is actually violated because x got

zeroed out and y has 25 in there, but x is pointing to a different location. Right?

So far so good. The way we're going to model the heap and the way the heap is

modeled in a lot of these systems is by not thinking of the heap as a heap, but to

thinking of the heat the way C likes for you to think of the heap, which is just a giant

address base, a giant array where you can put things into.

So what does that mean? It means that we can think of our program as having this

very big global array. And we're just going to call it MEM for now. Right? And it's an

array that essentially is going to map addresses to values. Right? And what's an

address? Well, an address is just a 64-bit value. And what comes after you read

something from an address? It depends on how you're modeling memory.

If you're modeling it at the byte level, then what comes out is a byte. If you're

modeling it at the word level then what comes out of it is a word. And depending on

the kind of bugs that you're interested in, and whether things like memory alignment

are an issue for you are not, you're going to model it a little bit differently, but

generally memory is just an array from an address to a value. Right?

So an address is just an integer. Right? It's in some sense not that different from the

way C thinks I'm an address. It's just an integer. It's just a value. It's just a 64-bit

integer, or a 32-bit integer, depending on your machine. It just a value that indexes

into that memory. And that you can put things in memory, read them from the

memory.

So things like pointer arithmetic just becomes integer arithmetic. In practice there's

a little bit of desugaring that has to happen because in C the pointer arithmetic

actually knows about the types of the pointers. And things will be incremented

proportional to the size, right? So this would actually be x plus 10 times the size of

int. Right?

But what's really important is what happens when you're reading and writing from

memory. So what used to be just a pointer reference from y to write 25, is now just
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I'm taking my memory array, and I'm indexing it with y. And I'm writing 25 to that

memory location. Right? And this assertion now becomes, well, I am reading from

location y in memory. And I am reading from location x in memory. And I am

comparing them. And I'm checking whether they are the same or not.

It's a very, very simple reduction to go from program that uses the heap to a

program the just uses this giant global array that represents the memory. And now

what that means is that in order to reason about programs that manipulate the heap

you don't really have to reason about programs that manipulate the heap. As long

as you have the ability to reason about arrays, you are good.

Now here's a simple question though. What about the malloc? So one thing you can

do is you can say, well, malloc, I can just take the C implementation of malloc and

actually implement malloc like that. And keep track of all the pages that I have

allocated and keep track of everything that has been freed. And keep a free list, and

everything. It turns out for a lot of purposes and for a lot of classes of bugs, you

don't need malloc to be that complicated.

In fact, you can get away with a malloc that looks like this, with a malloc that just

says, I'm going to keep a counter for the next free memory location. And whenever

somebody asks for an address, that address I'm just going to give this position and

then increment the position. Right? And then return rv, in this case.

So one of the thing that is malloc is completely ignoring.

AUDIENCE: [INAUDIBLE].

ARMANDO

SOLAR-LEZAMA:

Yeah. Freeing, right? This malloc says, yeah, forget about freeing. There's no

freeing. We're just going to keep walking through our memory allocating further, and

further, and further and that will be it. And we don't care about freeing anything. It

also doesn't really care about the fact that well, actually, there are regions of

memory where you shouldn't be writing. There are special addresses that have

special meaning that are reserved for the operating system.

It doesn't model any of the things that actually make writing a malloc function
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complicated, but at a certain level of abstraction, if you're trying to reason about

some complicated code that does pointer manipulation. And you don't care about

freeing memory, but you really care about is, am I going to write past the end of

some buffer, for example.

Then this malloc might be good enough. And this is actually that happens very, very

commonly when you're doing symbolic execution of real code. A very important step

is the modeling of your library functions. And how you model your library functions is

going to have a huge impact on the one hand on the performance and the

scalability of the analysis, but on the other hand, on the precision.

So if you have a Mickey Mouse model of malloc like this, it's going to be very, very

fast, but there are going to be certain classes of bugs that you won't be able to

catch. Right? So and this model, for example, I'm completely ignoring the

allocations. So if I have a bug because somebody is accessing unallocated space.

Well, I'm not going to find it with this Mickey Mouse model of malloc. Right?

So it's always a balance between the precision of the analysis versus the efficiency.

And the more complicated your models of standard functions like malloc get, the

less scalable the analysis is going to be, but for certain classes of bugs you will

need those models. And one of the big things in the [? Clee ?] paper was really

having reasonable models for all the different libraries in C, all the different libraries

that are needed in order to understand what a program is actually doing. So, OK.

So we've reduced the problem of reasoning about the heap to a problem of

reasoning about a program with arrays, but I haven't actually told you how to reason

about a program with arrays. And it turns out that most SMT solvers support a

theory of arrays. And the idea is if a is an array, there's some notation to say, well,

take that array and create a new array where location i has been updated to value

e. All right?

So if I have array a and I do this update operation, and then I try to read the value k,

then the meaning is that the value k is going to be equal to the value k at a if k is

different from i. And it's going to be equal to e if k is equal to i, right? That's what
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updating an array means. That's what it means to take an old array and update it to

be a new array.

And the nice thing about this is that if you have a formula that involves the theory of

arrays, so, for example, I started with the zero array that is just zeros everywhere.

And then I wrote 5 into location i, and 7 into location j. And then I'm reading from k.

And then I'm checking whether that's equal to 5 or not. Then that can be expanded

by using this definition to something that says, well, if k is equal to i then if k is equal

to y, and k is different from j, then, yes, this is going to be equal to 5. And otherwise

this is not going to be equal to 5, right?

And in practice SMT solvers don't just expand these into lots of Boolean formulas.

They, again, use this back and forth strategy between a SAT solver and an engine

that is able to reason about this theory of arrays in order to do it. But what's

important is that by relying on this theory of arrays, using the same strategy we saw

to generate formulas for integers you can actually generate formulas involving array

logic, and involving array updates, involving array axises, involving iteration over

arrays as long as you fix your path, these formulas are very easy to generate.

If you don't fix your paths if you want to generate a formula that corresponds to

going through all paths, then it's also relatively easy. The Only thing is you have to

deal with loops in more of a special way. Yes?

AUDIENCE: [INAUDIBLE].

ARMANDO

SOLAR-LEZAMA:

I don't know. So dictionaries and maps are actually very easy to model using

uninterpreted functions. And, in fact, the theory of arrays itself, it's just a special

case of uninterpreted functions. So more complicated things can be done with

uninterpreted functions. In modern SMT solvers there is native support for

reasoning about sets and set operations, which can be very, very useful if you're

reasoning about a program that involves lots of set computations, for example.

When designing one of these tools the modeling step is really important. And it's not

just how you model complicated program features down to your theories. So, for
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example, things like heaps down to arrays. And also the choice of what theories and

the solver you use. And there's a large number of theories and the solver with

different trade offs between how efficient they are versus how expressive they are.

And, in general, most of the production tools stick to the theory of bit-vectors and

they might use the theory of arrays to model the heap if that is necessary. Generally

production tools try to shy away from some of the more sophisticated theories, like

the theory of sets just because by virtue being richer they also tend to be less

scalable in some cases, unless you're dealing with a program that really requires

exactly that kind of reasoning in order to work with.

Are there other questions? Yes?

AUDIENCE: [INAUDIBLE] research in symbolic execution, what are people focusing on and

where is there room for improvement? [INAUDIBLE] applications.

ARMANDO

SOLAR-LEZAMA:

So one very active area of research is around applications. And looking at models

that will allow you to discover new classes of bugs. So, for example, Nikolai, and

Franz, and Xi Wang and I had a paper, what was it, last year when we were looking

at using symbolic execution to identify coding your program that a compiler might

optimize away. Security checks that might get optimized away by a compiler.

So it's very different from the question of will the program go down this path or not,

but there is a modeling step to go from this high level conceptual question of, is

there a code in my program that can be compiled away to an algorithm based on

symbolic execution that will rely on the ability of symbolic execution to easily tell you

whether the program can go down a particular path, or whether a particular path is

feasible.

So applications is a big area, extending to newer classes of bugs, growing to new

and different language features. For example, one of the things that is still fairly

hard to model from using symbolic execution are very high level languages, like

JavaScript or Python where you have a lot of very dynamic language features, but

at the same time they are-- if any technique can work for the symbolic execution, it's
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definitely very good.

And, in fact, we had some work a couple of years ago using symbolic execution to

reason about errors in Python programming assignments, for example. Yes?

AUDIENCE: So [INAUDIBLE]. How does [INAUDIBLE]?

ARMANDO

SOLAR-LEZAMA:

It is. So in the case of symbolic execution part of the problem is that your symbolic

state, it's very hard to simply say, OK, I executed this instruction, and then this

instruction, and then this instruction. The sequence is not there. There was some

work a few years ago looking, for example, at very small pieces of code, but very

critical, like a concurring data structure in operating system, or lock-free data

structure and modeling the interactions between threads by essentially saying,

every time there is a variable that could have been overwritten by something else,

you replace that value with just a fresh symbolic value that says, I have no idea

what this is.

And you generate constraints that relate to those symbolic values to symbolic

values in other threads. And this has been used even to reason about things like

missing memory fences, for example. And so it is possible, but the complexity grows

quite a bit. And it becomes the kind of thing that you cannot no longer do at the

scale of Microsoft Word, but you can do at the scale of, say, a concurring data

structure, for example.

There had been other work though in the context of concurrency looking at, for

example, can I use symbolic execution to reconstruct interleavings based on

knowledge of how the program behaved as it was running, for example.

And so this opens a lot of possibilities, having this capability to ask very concrete

questions about can my program run down this path. Being able to have symbolic

values and ask questions, what values should these things have in order for the

program to do something, or in order something to happen is a very powerful

capability and there's a lot of applications that have been tried, but this is a fairly

new piece of technology as far as technology for analyzing a program goes.
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