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The generalized heat-flow equation
> Last time we generated 

a general conservation 
equation

> Include a flux that 
depends on a “force”
gradient

> And a “capacity”
relation

sourcesQ PJ
dt
Qd

G
t
b

~~
=⋅∇+

+⋅−∇=
∂
∂ F

QJ T

Q C
T

κ= − ∇

∂
=

∂

� �

V

S

n

F

b
g

Image by MIT OpenCourseWare.



J. Voldman:  2.372J/6.777J Spring 2007, Lecture 13 - 4

Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT 
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

The generalized heat-flow equation
> We get a generalized 

conduction equation
• Assume homogeneous 

region

> Applies to
• Heat flow
• Mass transport (diffusion)
• Squeezed-film damping

> Provides a rich set of 
solution methods
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Thermal domain lumped elements
> Thermal resistor

• Resistance to heat flow
• Three types

» Conduction
» Convection
» Radiation

> Thermal capacitor
• Store thermal energy
• Specific heat × volume ×

density

> Electrothermal transducer
• Converts electrical dissipation 

into heat current
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Measuring temperature with the bolometer
> So far, we know how to 

convert an input heat flux 
into a temp change

> How do we convert that 
temp change back into 
the electrical domain?
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TCR
> Resistance changes with 

temperature (TCR)
• Beware, TCR is not constant!

> We can use resistor as a 
hotplate or a temperature 
sensor
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Coupling back into the electrical domain
> We can define a 

transducer that uses 
TCR to convert back 
into electrical domain

> In order to measure
electrical R, we need 
to introduce a voltage 
& current

> This current will 
couple back and 
induce its own ΔT
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Thermo – electrical coupling
> This is our prior 

electrothermal transducer

> We can add in the current 
source due to Joule heating

> The current source is 
dependent on R, which is 
dependent on ΔT, and so on

> What we will want is for IQ»I2R
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Example:  Self-heating of a resistor
> First, assume input IQ=0

> Now, electrical port is input, 
temp change is output

> Two ways to drive the resistor, 
current source or voltage 
source – it sometimes matters Current-source drive

1
T

Q T T

RT
I R C s
Δ

=
+ Expand out 

into D.E.

( )

TQTT

TQTT

RICR
dt

TdT

RIsCRT

=
Δ

+Δ

=+Δ 1

Plug in for 
IQ

2
0 (1 )T T R T

d TT R C I R T R
dt

αΔ
Δ + = + Δ

2 2
0 (1 )Q RI I R I R Tα= = + Δ

RT
CTΔT

+

-

I

+

-

V R( T)Δ
I =I RQ

2



Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT 
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

J. Voldman:  2.372J/6.777J Spring 2007, Lecture 13 - 12

Example:  Self-heating of a resistor
> First-order system with feedback results
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Example:  Self-heating of a resistor
> What changes for voltage-drive?

Voltage-source drive
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Results of modeling
> A positive TCR resistor driven from a current source can go 

unstable – fuse effect

> When dealing with the electrostatic actuator, we observed that 
very different behavior was found depending on whether the 
system was voltage-driven or current-driven

> Here we see that, depending on the way the electrical domain 
couples to the thermal energy domain, it is also important to 
look at the drive conditions of a system.
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Back to the bolometer
> Assume we want to measure 

IQ=1 nW with 1% accuracy

> This limits current one can use 
for measurement

> For Honeywell bolometer, 
R0~50 kΩ, αR~-2%/K, RT~107

K/W

> Input signal will create ΔT=10 
mK

> This produces ΔRsignal=2x10-4, 
or a 10 Ω resistance change

> Voltage must be < 0.7 mV
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Space and reciprocal space
> We have thus far focused on “big” lumped-element 

modeling to design and analyze systems

> This isn’t the only way to proceed

> We can chop up the model into many small “lumped 
elements discretize in space

> Or we can approximate the answer using series 
methods discretize in reciprocal space
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DC Steady State

> The Poisson Equation

> Boundary conditions
• Dirichlet – sets value on 

boundary

• Neumann – sets slope on 
boundary Flux

• Mixed – sets some function of 
value and slope

> The Poisson Equation is linear
• Can use superposition methods
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Finite-Difference Solution
> We can generate an equivalent 

circuit by discretizing the 
equation in space

> A numerical algorithm with a 
circuit equivalent

> In 1-D, divide bar into N 
segments and N+1 nodes
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Equivalent Circuit
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circuit for this equation

1
1

n n
hR R
Aκ−= =

( ) )(~
, nnS xPhAI =

( ) ( )

( ) ( ) 0,
1

11

,
11

=+
−

+
−

−=−+−

−

−+

−+

nS
n

nn

n

nn

nS
nnnn

I
R

TT
R

TT
A
I

hTTTT
κ

Define local 
current source

Define local 
resistance

This is KCL at a node

I2

n - 1

IS,n IS,n + 1 IS,n + 2

n + 1Rn - 1 Rn + 1n Rn

I1

Image by MIT OpenCourseWare.
Adapted from Figure 12.1 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 302. ISBN: 9780792372462.



Cite as: Joel Voldman, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, Spring 2007. MIT 
OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

J. Voldman:  2.372J/6.777J Spring 2007, Lecture 13 - 21

Equivalent Circuit
> Let’s apply this to 1-D 

self-heated resistor
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Example: Self-heated resistor
> Set up conductance 

matrix

> Solve

> Very appropriate for 
MATLAB

> Can even generate 
the conductance 
matrix with MATLAB 
scripts

> At edges, impose 
B.C’s
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Eigenfunction Solution
> This is a standard method for solving linear partial differential 

equations

> It leads to what amount to series expansion solutions, discretized in 
reciprocal space

> Typically problems converge with only a few terms – THIS IS WHY IT IS 
USEFUL
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Eigenfunction Expansion
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Eigenfunction Expansion

Multiply by 
orthogonal 

eigenfunction and 
integrate:
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Eigenfunction Expansion

For uniform 
power density:
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The Details
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Even if we consider only the first term in the expansion, we find
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Final answer:

At x=L/2:
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Outline
> Review

> Lumped-element modeling: self-heating of resistor

> Analyzing problems in space and 1/space
• The DC Steady State – the Poisson equation

» Finite-difference methods
» Eigenfunction methods

• Transient Response
» Finite-difference methods
» Eigenfunction methods

> Thermoelectricity
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Transient Modeling
> Finite-difference method

• Simply add a thermal capacitance to ground at each node of 
the finite-difference network.  These circuits can be analyzed 
with SPICE or other circuit simulators.
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Image by MIT OpenCourseWare.
Adapted from Figure 12.1 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 302.
ISBN: 9780792372462.
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Transient Modeling
> Finite-difference method

• What does the matrix representation look like now?
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Transient Modeling (continued)

> Eigenfunction method:
• Spatial response same 

as before
• Use impulse response in 

time to eventually get 
Laplace transfer function

• Use separation of 
variables to separate 
space and time
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Transient Modeling (continued)

> Eigenfunction method:
• Time response is a sum 

of decaying 
exponentials

• Time and space are 
linked via eigenvalues
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Transient Modeling (continued)

> Eigenfunction method:
• Match I.C. at t=0 to get 

series coefficients
• T(x,0) is related to 

instantaneous heat input 
and heat capacity
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Example:  Impulse Response
> Uniformly heated bar, an impulse in time
> Result is a series of decaying exponentials in time

2

22

n

odd 

0

     where

sin
n
4

~
~

),(

L
Dn

e
L

xn
C
QtxT t

n

n

πα

π
π

α

=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛= −∑

lower spatial frequencies 
decay slower

Heat flow from ends

Uniform internal heat generationz

y
x

L

W

Image by MIT OpenCourseWare.
Adapted from Figure 12.3 in Senturia, Stephen D. Microsystem Design. Boston,
MA: Kluwer Academic Publishers, 2001, p. 308. ISBN: 9780792372462.
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Using the Eigenfunction Solution
> We can go from solution to 

equivalent circuit

> First, we will lump
• Heat current conducted out 

as output
• Choose heat current 

source as input 
> Then take Laplace

> Then identify equivalent 
circuit for 1st order system

• This is NOT unique
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Image by MIT OpenCourseWare.
Adapted from Figure 12.4 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 310. ISBN: 9780792372462.
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Using the Eigenfunction Solution
> Each term in the 

eigenfunction solution has a 
simple circuit representation

> This means that if the 
eigenfunction solution 
converges with a few terms, 
the lumped circuit is very 
simple
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Image by MIT OpenCourseWare.
Adapted from Figure 12.4 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 310. ISBN: 9780792372462.
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A Three-Mode Equivalent Circuit
> For the first three terms in the eigenfunction 

expansion, we combine the three single-term circuits 
appropriately
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Image by MIT OpenCourseWare.
Adapted from Figure 12.5 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 312. ISBN: 9780792372462.
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Adapted from Figure 12.6 in Senturia, Stephen D. Microsystem Design.
Boston, MA: Kluwer Academic Publishers, 2001, p. 313. ISBN: 9780792372462.
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Outline
> Review

> Lumped-element modeling: self-heating of resistor

> The DC Steady State – the Poisson equation
• Finite-difference methods
• Eigenfunction methods

> Transient Response
• Finite-difference methods
• Eigenfunction methods

> Thermoelectricity
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Microscale temperature measurement/control
> We have seen that a resistor can be used as 

a  temperature sensor and hotplate

> There are other techniques to measure or 
control temperature at microscale

• Couple temperature to material properties

> Sensors
• TCR: temperature resistance change
• Thermal bimorph: temperature deflection
• Thermoelectrics: temperature induced voltage
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Coupled Flows
> In an ideal world, one driving 

force creates one flux

> In our world, multiple forces 
create multiple fluxes

• Drift-diffusion in 
semiconductors or 
electrolytes

> In general, all the different 
fluxes are coupled

> If you set it up right, the Lij

matrix is reciprocal
• The Onsager Relations
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Quantities in the Onsager Relations

> To explain thermoelectrics, 
we must look at coupling 
between heat flow and 
electric field

> This is written in a standard 
form
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Thermocouples
> Analyze the potential gradient around 

a closed loop under the assumption 
of zero current (Je=0)

> Thermocouple voltage depends on 
the difference in Seebeck Coefficient 
between the two materials, integrated 
from one temperature to the other

> It is a BULK EFFECT, not a junction 
effect

> It is possible to make thermocouples 
by accident when using different 
materials in MEMS devices in regions 
that might have temperature 
gradients!
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Image by MIT OpenCourseWare.
Adapted from Figure 11.10 in Senturia, Stephen D.
Microsystem Design. Boston, MA: Kluwer Academic
Publishers, 2001, p. 294. ISBN: 9780792372462.
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MEMS Thermocouples
> Many thermocouples in series 

create higher sensitivity (V/K)

> These are known as thermopiles

> In MEMS thermopiles, often use 
Al/Si or Al/polySi

> Able to get good thermal 
isolation of sensing element

> Number of thermocouples is 
limited by leg width

• Increasing leg width decreases 
thermal resistance and thus 
temperature response

Thermometrics commercial 
Si thermopile

Courtesy of Thermometrics Corporation. Used with permission.

Image removed due to copyright restrictions.
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Conclusions
> The thermal domain is a great way to transfer energy 

around
• Except that you have to pay the tax

> We can model thermal problems using
• Equivalent circuits via lumped element models in space

» “Big” and “small”
• Equivalent circuits via lumped element models in reciprocal 

space

> Introduction to Heat Transfer, Incropera and DeWitt

> Analysis of Transport Phenomena, William Deen

> Solid-State Physics, Ashcroft and Mermim

For Further Information
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