6.453 Quantum Optical Communication Spring 2009

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.

6.453 Quantum Optical Communication

Problem Set 3 Fall 2008

Issued: Thursday, September 18, 2008 Due: Thursday, September 25, 2008

Problem 3.1

Here we shall extend the results of problem 2.2 to include classically-random polarizations. Suppose we have a $+z$ -propagating, frequency- ω photon whose polarization vector (in problem 2.1 notation) is,

$$
\mathbf{i} \equiv \left[\begin{array}{c} \alpha_x \\ \alpha_y \end{array} \right],
$$

where α_x and α_y are a pair of complex-valued classical random variables that satisfy

$$
|\alpha_x|^2 + |\alpha_y|^2 = 1,
$$

with probability one. (Two joint complex-valued random variables, α_x and α_y , are really four joint real-valued random variables, viz., the real and imaginary parts of α_x and α_y .)

The Poincaré sphere representation for the *average* behavior of this random polarization vector is,

$$
\mathbf{r} \equiv \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} 2\text{Re}[\langle \alpha_x^* \alpha_y \rangle] \\ 2\text{Im}[\langle \alpha_x^* \alpha_y \rangle] \\ \langle |\alpha_x|^2 \rangle - \langle |\alpha_y|^2 \rangle \end{bmatrix},
$$

where—in keeping with the quantum notation for averages— $\langle \cdot \rangle$ denotes ensemble average.

- (a) Use the Schwarz inequality to prove that $\mathbf{r}^T \mathbf{r} \equiv r_1^2 + r_2^2 + r_3^2 \leq 1$, i.e., the r vector lies on or inside the unit sphere.
- (b) Let \mathbf{i}_a and \mathbf{i}_b be a pair of deterministic, orthogonal, complex-valued unit vectors, viz.,

$$
\mathbf{i}_{k}^{\dagger} \mathbf{i}_{l} = \delta_{kl} \equiv \begin{cases} 1, & k = l \\ 0, & k \neq l \end{cases},
$$

where k and l can each be either a or b. By means of wave plates, a polarizing beam splitter, and a pair of ideal photon counters, it is possible to measure whether the photon is polarized along \mathbf{i}_a or along \mathbf{i}_b . The statistics of this measurement satisfy,

$$
Pr(\text{polarized along } \mathbf{i}_a) = \frac{1 + \mathbf{r}_a^T \mathbf{r}}{2},\tag{1}
$$

$$
Pr(\text{polarized along } \mathbf{i}_b) = \frac{1 + \mathbf{r}_b^T \mathbf{r}}{2},\tag{2}
$$

where \mathbf{r}_a and \mathbf{r}_b are the Poincaré sphere representations of \mathbf{i}_a and \mathbf{i}_b , respectively. Show that $\mathbf{r}_a = -\mathbf{r}_b$, so that Eqs. (1) and (2) constitute a proper probability distribution.

(c) Suppose that the photon's random polarization leads to $\mathbf{r} = \mathbf{0}$, i.e., $r_1 = r_2 =$ $r_3 = 0$. Show that

$$
Pr(\text{polarized along } i_a) = Pr(\text{polarized along } i_b) = \frac{1}{2},
$$

for all pairs of deterministic, orthogonal complex-valued unit vectors $\{i_a, i_b\}$, and thus that $\mathbf{r} = \mathbf{0}$ represents a state of completely random polarization. Contrast the preceding measurement statistics with what will be obtained when

$$
\mathbf{r} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{r}_a = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad \mathbf{r}_b = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix},
$$

and when

$$
\mathbf{r} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{r}_a = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{r}_b = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix},
$$

are the Poincaré sphere representations of the photon and the pair of orthogonal polarizations being measured.

Problem 3.2

Here we introduce the notion of a density operator, i.e., a way to account for classical randomness limiting our knowledge of a quantum system's state. Consider a quantum mechanical system whose state at time t is not known. Instead, there is a classicallyrandom probability distribution for this state. In particular, suppose that there are M distinct unit-length kets, $\{ |\psi_m\rangle : 1 \leq m \leq M \}$, and that the system is known to be in one of these states. Moreover the probability that it is in state $|\psi_m\rangle$ at time t is p_m , for $1 \leq m$ \sum p_m , for $1 \le m \le M$, where $\{p_m : 1 \le m \le M\}$ is a classical probability distribution:
 $p_m \ge 0$ and $\sum_{m=1}^{M} p_m = 1$.

(a) Suppose that we measure the observable \hat{O} at time t, where \hat{O} has distinct eigenvalues, $\{o_n: 1 \leq n < \infty\}$, and a complete orthonormal set of associated eigenkets, $\{|o_n\rangle : 1 \leq n < \infty\}$. GIVEN that the state of the system at time t is $|\psi_m\rangle$, we know that the \hat{O} measurement will yield outcome o_n with conditional probability $Pr(o_n | \psi_m) \equiv |\langle o_n | \psi_m \rangle|^2$, for $1 \leq n < \infty$ and $1 \leq m \leq M$. Use this conditional probability distribution to obtain the unconditional probability, $Pr(o_n)$, of getting the outcome o_n when we make the O measurement at time t. (b) Define a density operator for the system by,

$$
\hat{\rho} \equiv \sum_{m=1}^{M} p_m |\psi_m\rangle \langle \psi_m|.
$$

Show that $\hat{\rho}$ is an Hermitian operator, and verify that your answer to (a) can be reduced to

$$
\Pr(o_n) = \langle o_n | \hat{\rho} | o_n \rangle, \quad \text{for } 1 \le n < \infty.
$$

(c) Show that the expected value of the \hat{O} measurement, i.e.,

$$
\langle \hat{O} \rangle \equiv \sum_{n=1}^{\infty} o_n \Pr(o_n),
$$

satisfies

$$
\langle \hat{O} \rangle = \text{tr}(\hat{\rho}\hat{O}),
$$

where $tr(\hat{A})$ for any linear Hilbert-space operator, \hat{A} , is the trace of that operator, defined as follows. Let $\{|k\rangle : 1 \leq k < \infty\}$ be an arbitrary complete set of orthonormal kets on the quantum system's state space, so that

$$
\hat{I} = \sum_{k=1}^{\infty} |k\rangle\langle k|.
$$

Then
$$
\operatorname{tr}(\hat{A}) \equiv \sum_{k=1}^{\infty} \langle k | \hat{A} | k \rangle,
$$

i.e., it is the sum of the operator's diagonal matrix-elements in the $\{|k\rangle\}$ representation. Comment: The trace operation is invariant to the choice of the CON basis used for its calculation. Hence a propitious choice of the basis can be a great aid in simplifying the calculation of averages involving a density operator.

Problem 3.3

Here we will explore the difference between a pure state and a mixed state, i.e., the difference between knowing that a quantum system is in a definite state $|\psi\rangle$ as opposed to having a classically-random distribution over a set of such states, namely a density operator $\hat{\rho}$. Because the density operator is Hermitian, it has eigenvalues and eigenkets. Let us assume that these form a countable set, viz., $\hat{\rho}$ has eigenvalues, $\{\rho_n: 1 \leq n < \infty\}$, and associated eigenkets $\{\vert \rho_n \rangle: 1 \leq n < \infty\}$, that satisfy

$$
\hat{\rho}|\rho_n\rangle = \rho_n|\rho_n\rangle
$$
, for $1 \le n < \infty$.

Without loss of generality, we can assume that these eigenkets form a complete orthonormal set, i.e.,

$$
\langle \rho_m | \rho_n \rangle = \delta_{nm},
$$

$$
\hat{I} = \sum_{n=1}^{\infty} |\rho_n \rangle \langle \rho_n|.
$$

(a) Show that the eigenvalues $\{\rho_n\}$ satisfy

$$
0 \le \rho_n \le 1, \quad \text{for } 1 \le n < \infty,
$$

and ∞

$$
\sum_{n=1}^{\infty} \rho_n = 1.
$$

- (b) Show that $tr(\hat{\rho}) = 1$ for any density operator
- (c) Suppose that the quantum system is in a pure state, i.e., it is known to be in the state $|\psi\rangle$. Show that this situation can be represented in density-operator form by setting $\rho_1 = 1$ and $|\rho_1\rangle = |\psi\rangle$, viz., a pure state has a density operator with only one eigenket whose associated eigenvalue is non-zero. Show that $\text{tr}(\hat{\rho}^2) = 1$ for any pure-state density operator.
- (d) When the density operator has two or more eigenkets with non-zero eigenvalues we say that the state is mixed, i.e., there are at least two different pure states that can occur with non-zero probabilities. Show that $tr(\hat{\rho}^2) < 1$ for any mixedstate density operator.

Problem 3.4

Let A and B be observables for some quantum system. In particular, let A and B each be Hermitian operators with complete orthonormal (CON) sets of eigenkets, $\{|a_n\rangle : 1 \le n < \infty\}$ and $\{|b_n\rangle : 1 \le n < \infty\}$, and associated eigenvalues, $\{a_n : 1 \le n \le n\}$ $n < \infty$ } and { $b_n : 1 \leq n < \infty$ }, respectively.

(a) The commutator of \hat{A} and \hat{B} is, by definition,

$$
\left[\hat{A}, \hat{B}\right] \equiv \hat{A}\hat{B} - \hat{B}\hat{A}.
$$

Show that $\frac{1}{j} \left[\hat{A}, \hat{B} \right]$ is an Hermitian operator.

(b) Assume that these observables commute, i.e.,

$$
\left[\hat{A}, \hat{B}\right] \equiv \hat{A}\hat{B} - \hat{B}\hat{A} = 0,
$$

and that the eigenvalues of \hat{A} are distinct, as are the eigenvalues of \hat{B} . Show that every eigenket of \hat{A} is also an eigenket of \hat{B} and that every eigenket of \hat{B} is also an eigenket of A , i.e., A and B have a common, CON set of eigenkets.

Problem 3.5

Here we introduce the notation of tensor products, to permit us to deal with multiple quantum systems. Let \mathcal{H}_1 and \mathcal{H}_2 be the Hilbert spaces of possible states for two quantum systems, S_1 and S_2 , respectively. If we are interested in making a joint measurement on these two systems, e.g., the sum of their "positions", etc., we need to have a way to describe states and observables for the joint system. Let $\{ | \phi_n \rangle_1$: $1 \leq n < \infty$ and $\{|\theta_m\rangle_2 : 1 \leq m < \infty\}$ be orthonormal bases for \mathcal{H}_1 and \mathcal{H}_2 , respectively, where the subscripts 1 and 2 indicate to which Hilbert space the states belong. The Hilbert space of states for the *joint* quantum system—i.e., systems 1 and 2 together—is spanned by the tensor product states $\{ |\phi_n\rangle_1 \otimes |\theta_m\rangle_2 : 1 \leq n, m < \infty \},\$ i.e., an arbitrary state $|\psi\rangle \in \mathcal{H}$ can be expressed as a linear combination,

$$
|\psi\rangle = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} c_{nm} (|\phi_n\rangle_1 \otimes |\theta_m\rangle_2),
$$
 (3)

by appropriate choice of the coefficients $\{c_{nm}\}\$. Thus, because the inner product between $|\phi_n\rangle_1 \otimes |\theta_m\rangle_2$ and $|\phi_k\rangle_1 \otimes |\theta_l\rangle_2$ is defined to be,

$$
({}_2\langle\theta_l|\otimes 1\rangle\langle\phi_k|)(|\phi_n\rangle_1\otimes|\theta_m\rangle_2) = ({}_2\langle\theta_l|\theta_m\rangle_2)({}_1\langle\phi_k|\phi_n\rangle_1),
$$

the inner product between $|\psi\rangle$ from Eq. (3) and

$$
|\psi'\rangle = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} d_{nm} (|\phi_n\rangle_1 \otimes |\theta_m\rangle_2),
$$

is
\n
$$
\langle \psi' | \psi \rangle = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} d_{nm}^* c_{nm}.
$$

(a) Let \hat{A}_1 be an observable of system 1, i.e., an Hermitian operator on \mathcal{H}_1 with a complete set of eigenkets, and let B_2 be an observable of system 2, i.e., an Hermitian operator on \mathcal{H}_2 with a complete set of eigenkets. The tensor product $\hat{C} = \hat{A}_1 \otimes \hat{B}_2$ is a linear operator that maps the state $|\phi_n\rangle_1 \otimes |\theta_m\rangle_2$ into the state $(A_1|\phi_n\rangle_1) \otimes (B_2|\theta_m\rangle_2).$

Show that \hat{C} is an Hermitian operator on \mathcal{H} which has a complete set of eigenkets, so that \hat{C} is an observable on the joint Hilbert space of systems 1 and 2.

(b) Let

$$
\hat{A}_1 = \sum_{n=1}^{\infty} a_n |a_n\rangle_{11} \langle a_n| \text{ and } \hat{B}_2 = \sum_{m=1}^{\infty} b_m |b_m\rangle_{22} \langle b_m|
$$

be the diagonal (eigenvalue/eigenket) decompositions of \hat{A}_1 and \hat{B}_2 , where the ${a_n}$ are assumed to be distinct, as are the ${b_m}$. When we measure A_1 on system 1 and we measure B_2 on system 2 with the joint system being in state $|\psi\rangle$, given by Eq. (3), the outcome will be an ordered pair $\{(a_n, b_m)\}\$ of eigenvalues. The probability that (a_n, b_m) occurs is given by,

$$
Pr(a_n, b_m) = |\langle \psi | (|a_n \rangle_1 \otimes |b_m \rangle_2)|^2.
$$

Show that this is a proper probability distribution. Express the marginal probabilities, $Pr(a_n)$ and $Pr(b_m)$, in terms of $|\psi\rangle$, the $\{|a_n\rangle_1\}$ and the $\{|b_m\rangle_2\}$.

(c) Specialize the results of (b) to the case of a product state, viz., a state that satisfies $|\psi\rangle = |\psi_1\rangle_1 \otimes |\psi_2\rangle_2$.

Problem 3.6

Here we prove that it is impossible to clone the unknown state of a quantum system by means of a unitary evolution. It is a proof by contradiction. Suppose that we have a quantum system whose Hilbert space of states is \mathcal{H}_S , where S indicates that this is the *source* system. Suppose too that we have a *target* system whose Hilbert space of states is \mathcal{H}_T . We will assume that these two Hilbert spaces have the same dimensionality, e.g., 2.

We wish to construct a perfect cloner, viz., a unitary operator, \hat{U} , on the tensor product space $\mathcal{H} \equiv \mathcal{H}_S \otimes \mathcal{H}_T$ such that

$$
\hat{U}(|\psi\rangle_S \otimes |0\rangle_T) = |\psi\rangle_S \otimes |\psi\rangle_T, \tag{4}
$$

where $|\psi\rangle_S$ is an *arbitrary* unit-length ket in \mathcal{H}_S , and $|0\rangle_T$ is a reference ("blank") unit-length ket in \mathcal{H}_T . Thus, the perfect cloner does not disturb the source state while it turns the target's "blank" state into a clone of the source state.

Let $|\psi_1\rangle$ _S and $|\psi_2\rangle$ _S be two distinct, unit-length kets in \mathcal{H}_S , let α and β be two non-zero complex numbers, and assume that we have found a perfect cloner operator U that satisfies Eq. (4) for all unit-length source kets.

(a) Define

$$
|\psi'\rangle_S = \frac{\alpha |\psi_1\rangle_S + \beta |\psi_2\rangle_S}{\sqrt{|\alpha|^2 + |\beta|^2 + 2\text{Re}[\alpha^* \beta(s \langle \psi_1 | \psi_2 \rangle_S)]}}.
$$

Use unitarity to evaluate the length of the ket $|\theta\rangle \equiv \hat{U}(|\psi'\rangle_S \otimes |0\rangle_T)$.

(b) Use the linearity of \hat{U} to show that

$$
|\theta\rangle = \alpha'(|\psi_1\rangle_S \otimes |\psi_1\rangle_T) + \beta'(|\psi_2\rangle_S \otimes |\psi_2\rangle_T). \tag{5}
$$

where

$$
\alpha' \equiv \frac{\alpha}{\sqrt{|\alpha|^2 + |\beta|^2 + 2\text{Re}[\alpha^* \beta(s \langle \psi_1 | \psi_2 \rangle_S)]}}
$$

$$
\beta' \equiv \frac{\beta}{\sqrt{|\alpha|^2 + |\beta|^2 + 2\text{Re}[\alpha^* \beta(s \langle \psi_1 | \psi_2 \rangle_S)]}}
$$

(c) Use Eq. (5) to evaluate the length of $|\theta\rangle$. Show that this result contradicts what you found in (a), and thus conclude that there is no unitary \hat{U} that can be a perfect cloner.