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Supplementary Reading: For basic Dirac notation quantum mechanics: 

•	 Section 2.2 of M. A. Nielsen and I. L. Chuang, Quantum Computation and 
Quantum Information 

•	 Sections 1.1–1.16 of W.H. Louisell, Quantum Statistical Properties of Radiation. 

Problem 2.1 
Here we shall explore the use of wave plates to perform polarization transformations 
on a single photon. The polarization state of a +z-propagating, frequency-ω photon 
at z = 0 is characterized by a complex-valued unit vector, 

αxi ≡ 
αy 

,	 (1) 

such that Re[ie−jωt] describes the time evolution of the photon at z = 0 where 

i†i = |αx|2 + |αy|2 = 1, 

with 
i† ≡ αx 

∗ αy 
∗ , 

is the unit-length condition for i. 

(a) For our monochromatic photon, propagation through L m of material in which 
light of arbitrary polarization propagates at velocity c/n, where n is the ma
terial’s refractive index at frequency ω, leads to a phase delay φ = ωnL/c. 
Thus the time evolution of the photon at z = L is given by Re[ie−jω(t−nL/c)] = 
Re[i�e−jωt], where i� ≡ iejφ. 

Show that the polarization state i� is identical to the polarization state i, i.e., 
the contour traced out by Re[ie−jωt] in the x-y plane is identical to that traced 
out by Re[i�e−jωt]. 

(b) Wave plates are made of birefringent materials, i.e., materials which have differ
ent velocities of propagation for light polarized along their principal axes. When 
these axes are aligned with x and y, respectively, propagation of a monochro
matic photon—whose polarization at z = 0 is given by Eq. (1)—results in a 
new polarization at z = L, � � 

αxe
jφx 

i� = 
αye

jφy 
, (2) 
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where φx ≡ ωnxL/c and φy ≡ ωnyL/c give the respective phase shifts in terms 
of the propagation velocities c/nx and c/ny along the x and the y axes. A 
quarter-wave plate (QWP) is one for which φx − φy = π/2. Suppose that a 
photon of +45◦ linear polarization, 

1/
√

2 
i = 

1/
√

2 

is the input to a QWP whose principal axes are aligned with x and y, respec
tively. 

Show that the output of this QWP is circularly polarized. 

Suppose that this circularly polarized output is the input to another QWP 
whose principal axes are aligned with x and y, respectively. What is the result
ing polarization of the output from this QWP? 

(c) A half-wave plate (HWP) is one for which the phase difference between propa
gation along its principal axes is π rad. Suppose that a photon of polarization 

1 
i = 

0 

is the input to an HWP whose “fast” (low refractive index) axis is parallel to 
the unit vector


�ifast = �ix cos(θ) +�iy sin(θ),


and whose “slow” (high refractive index) axis is parallel to the unit vector 

�islow = −�ix sin(θ) +�iy cos(θ). 

What is the polarization state at the output of the HWP? 

(d) Suppose we wish to transform an x-polarized input photon, 

1 
iin = 

0 

into an output photon of polarization state, 

αxiout = 
αy 

Show that this can be done by first using a half-wave plate to transform iin to 

iHWP =	
|α
α

x

y

| 
,| | 

and then using another wave plate, whose principal axes are aligned with x 
and y respectively, and whose propagation phase difference φx − φy is chosen 
appropriately, to transform iHWP into iout. 
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(e) The polarization transformation scheme you verified in (d) is not a convenient 
experimental approach, because it requires a phase plate with a controllable 
propagation phase difference φx − φy. Here we consider an alternative approach 
that only needs a QWP and an HWP. Suppose that we wish to transform an 
arbitrary given input polarization 

αxiin = ,
αy 

into horizontal polarization � �

1


iout = . 
0 

Because iin is, in general, an elliptical polarization, there must be a Cartesian 
coordinate system, (x�, y�), in which this input polarization takes the form 

α�xiin = ,
αy
� 

with αy
� = jkα� , for k a positive constant. Use this fact to argue that a QWP, x

with its fast axis aligned in the y� direction, will convert iin into linear polariza
tion, after which an HWP can be used to obtain an iout that is linearly polarized 
in the x direction. Using these results, explain how propagation through an 
HWP and a QWP can be used to transform an initially x-polarized photon into 
any desired polarization state. 

Problem 2.2 
Here we shall introduce the Poincaré sphere, viz., a 3-D real representation for the 
2-D polarization state � � 

αxi = ,
αy 

of a +z-propagating, frequency-ω photon. Define a real-valued 3-vector, r as follows, ⎡ ⎤ ⎡	 ⎤ 
r1 2Re[αx

∗ αy] 
r ≡ ⎣ r2 ⎦ = ⎣ 2Im[αx

∗ αy] ⎦ . 
r3 |αx|2 − |αy|2 

(a) Show that knowledge of	 r is equivalent to knowledge of i, i.e., r completely 
describes photon’s polarization. 

(b) Show that i†i = 1 implies that rT r ≡ r2 + r2 + r2 = 1, i.e., the photon’s 1 2 3 

polarization-state lies on the unit-sphere (called the Poincaré sphere) in r space. 

(c) Where do x and y polarizations appear on the Poincaré sphere? Where do left 
and right circular polarizations appear on this sphere? 
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Problem 2.3 
Let Â be a linear operator that maps kets in the Hilbert space H into other kets in 
this space, i.e., for every |x� ∈ H, there is a |y� ∈ H that satisfies |y� = Â|x�. Let 
{ |φn� : n = 1, 2, . . . , } be an arbitrary complete orthonormal (CON) set of kets in H, 
i.e., 

1, for n = m, 
�φn|φm� = δnm ≡ 

0, for n =� m. 

∞

Î = ,|φn��φn|
n=1 

where Î is the identity operator on H. 

(a) Show that the operator Â is completely characterized by its {φn} matrix ele
ments, viz., { �φm|Â|φn� : 1 ≤ n,m ≤ ∞}, by proving that 

∞ ∞

Â = �φm|Â|φn�|φm��φn|
m=1 n=1 

(b) Let |x� = ∞ 
n=1 xn|φn� be an arbitrary ket in H and let |y� = Â|x�. Show that 

∞ ∞

|y� = 
m=1 

ym|φm� with ym = 
n=1 

�φm|Â|φn�xn, for 1 ≤ n,m < ∞. 

(c) Specialize your results from (a) and (b) to the case in which Â is an observable, 
and the {φn} are its CON eigenkets. 

Problem 2.4 
Consider a quantum system, S, in the Schrödinger picture, with Hamiltonian Ĥ. 
Suppose that Ĥ has distinct, real-valued, non-negative, discrete eigenvalues { hn : 
n = 0, 1, 2, . . . , } and associated orthonormal eigenkets, { |hn� : n = 0, 1, 2, . . . , }. 

(a) Show that the time-evolution operator obeys 

∞

Û(t, t0) = exp[−jhn(t − t0)/�]|hn��hn|, for t ≥ t0. 
n=0 

(b) Show that � � � � 
Û(t, t0), Ĥ = Û †(t, t0), Ĥ = 0, 

i.e., the time-evolution operator and its adjoint both commute with the Hamil
tonian. 
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(c) Suppose that the system is in the state |ψ(t0)� = |h1� at time t = t0. Find the 
state of the system |ψ(t)� at an arbitrary later time t. 

(d) Suppose that |ψ(t)� is as found in (c), and that we measure the observable 

∞

Ô = ok|ok��ok|
k=1 

at time t. Find Pr( Ô-measurement outcome = ok) for k = 1, 2, 3, . . . Use this 
result to explain why the eigenkets of Ĥ are called stationary states. 

Problem 2.5 
Here we shall derive the time-frequency uncertainty principle of classical signal anal
ysis. Essentially the same derivation can lead to the Heisenberg uncertainty principle 
for position and momentum by means of wavefunction (rather than Dirac-notation) 
quantum mechanics. Let x(t) be a complex-valued, square-integrable time function 
whose Fourier transform is 

∞ 

X(f) ≡ dt x(t)e−j2πft . 
−∞ 

Define a normalized intensity for x(t) via, 

p(t) ≡ � 
|x(t)|2 

,∞ 

dt |x(t)|2 

−∞ 

and a normalized intensity for X(f) via, 

P (f) ≡ � ∞
|X(f)|2

2 
. 

df |X(f)|
−∞ 

(a) Show that	 p(t) and P (f) can be thought of as probability density functions, 
i.e., they are non-negative functions that integrate to one. 

(b) Define the root-mean-square time duration for x(t) to be, 

∞ 

T ≡ dt t2p(t), 
−∞ 

and the root-mean-square bandwidth of X(f) to be, 

∞ 

W ≡ df f2P (f). 
−∞ 
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Show that
 ∞dx(t)

=
 df j2πfX(f)ej2πft ,


dt −∞ 

dx(t)
i.e., j2πfX(f) is the Fourier transform of . Then, use Parseval’s theorem 

dt 
and the Schwarz inequality and to prove that 

∞ dx(t)
dt tx∗(t) 

−∞1
 dt

TW ≥
 ∞ . 

2π

dt |x(t)|2 

−∞ 

(c) Use the result from (b) and the fact that |z| ≥ |Re(z)|, for any complex number 
z, to show that, 

∞ dx(t)
Re dt tx∗(t)

1
 dt
−∞
∞TW ≥ 

2π

dt |x(t)|2 

−∞ 

∞ 

dt t 
d(|x(t)|2) 

−∞1
 dt
 1

=
 ∞ =

4π
. 

4π

dt |x(t)|2 

−∞ 

(d) Show that equality occurs in (b) if and only if x(t) = K exp(at2), where K and 
a are complex-valued constants with Re(a) < 0. Assume that x(t) is of this 
form and then show that equality occurs in (c) if and only if a is real. Verify 
that 

x(t) = 
exp(−t2/4t02) , 

(2πt20)
1/4 

has Fourier transform 

X(f) = (8πt2)1/4 exp(−4π2f 2t2),0 0

and that this x(t) has T = t0 and this X(f) has W = 1/4πt0, thus giving 
TW = 1/4π. 
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