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Reading: For probability review: Chapter 3 of J. H. Shapiro, Optical Progagation,

Detection, and Communication,

For linear algebra review: Section 2.1 of M. A. Nielsen and I. L. Chuang, Quantum

Computation and Quantum Information.


Problem 1.1 
Here we shall verify the elementary properties of the 1-D Gaussian probability density 
function (pdf) 

e−(X−m)2/2σ2 

px(X) = .√
2πσ2 

(a) By converting from rectangular to polar coordinates, using X − m = R cos(Φ) 
and Y − m = R sin(Φ), show that �� �2 � �∞ 

dX e−(X−m)2/2σ2 
= 

∞ 

dX 
∞ 

dY e−(X−m)2/2σ2−(Y −m)2/2σ2 
= 2πσ2 , 

−∞ −∞ −∞ 

thus verifying the normalization constant for the Gaussian pdf. 

(b) By completing the square in the exponent within the integrand, � ∞ ejvX−(X−m)2/2σ2 

dX ,√
2πσ2 −∞ 

verify that

Mx(jv) = ejvm−v2σ2/2 ,


is the characteristic function associated with the Gaussian pdf. 

(c) Differentiate Mx(jv) to verify that E(x) = m; differentiate once more to verify 
that var(x) = σ2 . 

Problem 1.2 
Here we shall verify the elementary properties of the Poisson probability mass function 
(pmf), 

n m 
Px(n) = e−m , for n = 0, 1, 2, . . . , and m ≥ 0. 

n! 
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(a) Use the power series

∞

z e = , 
n! 

Mx(jv) = exp[m(ejv − 1)]. 

that var(x) = m. 

� 

=0n

to verify that the Poisson pmf is properly normalized. 

z(b) Use the power series for to verify that e

is the characteristic function associated with the Poisson pmf. 

(c) Differentiate M (jv) to verify that E( ) = ; differentiate once more to verify x mx

Let be a Rayleigh random variable, i.e., has pdf x x 
Problem 1.3 

n z 

px(X) = 

⎧⎨ ⎩

σ
X 

2 e
−X2/2σ2 

, for X ≥ 0 

0, otherwise,


and let y = x2 . 

(a) Find py(Y ), the pdf of y. 

(b) Find my and σy 
2, the mean and variance of the random variable y. 

Problem 1.4 
Let x and y be statistically independent, identically distributed, zero-mean, variance 
σ2, Gaussian random variables, i.e., the joint pdf for x and y is, 

e−X2/2σ2−Y 2/2σ2 

px,y(X, Y ) = . 
2πσ2 

Suppose we regard (x, y) as the Cartesian coordinates of a point in the plane, and 
let (r, φ) be the polar-coordinate representation of this point, viz., x = r cos(φ) and 
y = r sin(φ) for r ≥ 0 and 0 ≤ φ < 2π 

(a) Find pr,φ(R, Φ), the joint pdf of r and φ. 

(b) Find the marginal pdfs, pr(R) and pφ(Φ), of these random variables, and prove 
that r and φ are statistically independent random variables. 
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Problem 1.5 
Let N, x be joint random variables. Suppose that x is exponentially distributed with 
mean m, i.e.,	 ⎧ ⎨ e−X/m 

, for x ≥ 0, 
px(X) = m ⎩ 

0, otherwise, 

is the pdf of x. Also suppose that, given x = X, N is Poisson distributed with mean 
value x, i.e., the conditional pmf of N is, 

Xn 

PN |x( n | x = X) = 
n! 

e−X , for n = 0, 1, 2, . . . 

(a) Use the integral formula, 

∞ 

dZZn e−Z = n!, for n = 0, 1, 2, . . . , 
0 

(where 0! = 1) to find PN (n), the unconditional pmf of N . 

(b) Find	 MN (jv), the characteristic function associated with your unconditional 
pmf from (a). 

(c) Find E(N) and var(N), the unconditional mean and variance of N , by differ
entiating your characteristic function from (b). 

Problem 1.6 
Let x, y be jointly Gaussian random variables with zero-means mx = my = 0, identical 
variances σx 

2 = σy 
2 = σ2, and nonzero correlation coefficient ρ. Let w, z be two new 

random variables obtained from x, y by the following transformation, 

w = x cos(θ) + y sin(θ) 

z = −x sin(θ) + y cos(θ), 

for θ a deterministic angle satisfying 0 < θ < π/2. 

(a) Show that this transformation is a rotation in the plane, i.e., (w, z) are obtained 
from (x, y) by rotation through angle θ 

(b) Find pw,z(W, Z) the joint pdf of w and z. 

(c) Find a θ value such that w and z are statistically independent. 
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Problem 1.7 
Here we shall examine some of the eigenvalue/eigenvector properties of an Hermitian 
matrix. Let x be an N -D column vector of complex numbers whose nth element is 
xn, let A be an N × N matrix of complex numbers whose ijth element is aij , and let 
† denote conjugate transpose so that x† = x∗ x∗ x∗ and A† is an N × N1 2 N· · · 
matrix whose ijth element is a∗ 

ji. 

(a) Find the adjoint of A, i.e., the matrix B which satisfies (By)†x = y†(Ax) for all 
x, y ∈ CN , where CN is the space of N -D vectors with complex-valued elements. 
If B = A, for a particular matrix A, we say that A is self-adjoint, or Hermitian. 
Assume that A is Hermitian for parts (b)–(d) 

(b) Let A have eigenvalues { µn : 1 ≤ n ≤ N } and normalized eigenvectors { φ :n 

1 ≤ n ≤ N } obeying 

Aφ = µnφ , for 1 ≤ n ≤ N .n n

φ†φ = 1, for 1 ≤ n ≤ N .n n 

Show that µn is real valued for 1 ≤ n ≤ N . 

(c) Show that if µn �= µm then φ†
nφm = 0, i.e., eigenvectors associated with distinct 

eigenvalues are orthogonal. 

(d) Suppose there are two linearly independent eigenvectors, φ and φ� which have 
the same eigenvalue, µ. Show that two orthogonal vectors, θ and θ� can be 
constructed satisfying, 

Aθ = µθ, 

Aθ� = µθ�, 

θ†θ� = 0. 

(e) Because of the results of parts (c) and (d), we can assume that { φ : 1 ≤ n ≤n 

N } is a complete orthornormal (CON) set of vectors on CN , i.e., 

1, for n = m, 
φ†φ = n m 

0, for n = m. 

Let IN be the identity matrix on this space. Show that 

N

IN = φnφ
†
n. 

n=1 
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Show that 
N

A = µnφnφ
†
n. 

n=1 

Problem 1.8 
Here we introduce the notion of overcompleteness. Consider 2-D real Euclidean space, 
R2, i.e., the space of 2-D column vectors x where xT = x1 x2 , with x1 and x2 

being real numbers. Define three vectors as follows: � √
3/2 

� � 
0 

� � 
−
√

3/2 
� 

x1 = , x2 = , x3 = . 
−1/2 1 −1/2 

(a) Make a labeled sketch of these three vectors on an (x1, x2) plane, and find xT
n xm 

for 1 ≤ n,m ≤ 3. Are these three vectors normalized (unit length)? Are they 
orthogonal? 

(b) Show that any two of {x1, x2, x3} form a basis for the space R2, i.e., any y ∈ R2 

can be expressed as 

y = ax1 + a� x2 = bx1 + b� x3 = cx2 + c�x3, 

for appropriate choices of the (real-valued) coefficients {a, a�, b, b�, c, c�}. 

(c) Show that the 2 × 2 identity matrix, I2, can be expressed as 

3
2 � 

TI2 = xnxn . 3 
n=1 

Use this result to prove that for any x ∈ R2 that 

3
2 � 

x = (x T x)xn. 
3 n 

n=1 

Comment: Let eT 
1 = 1 0 and eT 

2 = 0 1 be the standard basis of R2 . They 
are a complete orthornormal set of vectors on RT , hence 

2

I2 = enen
T , 

n=1 

and the standard representation for x ∈ R2 can be expressed as 

2

x = (en
T x)en. 

n=1 
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We say that {x1, x2, x3} form an overcomplete basis for R2 because any two of them 
is enough to represent an arbitrary vector in this space, but all three taken together 
resolve the identity [their outer-product-sum times a scale factor equals the identity 
matrix, as shown in part (c)] hence the expansion coefficients needed to represent an 
arbitrary vector in this overcomplete basis can be found via projection [as shown in 
part(c)]. 
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