Chapter 14

Introduction to lattice and trellis
codes

In this chapter we discuss coding techniques for bandwidth-limited (high-SNR) AWGN channels.

On bandwidth-limited channels, nonbinary signal alphabets such as M-PAM must be used to
approach capacity. Furthermore, the signals should be used with a nonuniform, Gaussian-like
probability distribution.

Using large-alphabet approximations, we show that the total coding gain of a coded modulation
scheme for the bandwidth-limited AWGN channel is the sum of a coding gain due to a denser
packing than the baseline M-PAM scheme, plus a shaping gain due to constellation shaping
(or equivalently to use of a nonuniform distribution). At high SNRs, the coding and shaping
problems are separable.

The maximum possible shaping gain is a factor of 7e/6 (1.53 dB). Simple shaping methods
such as shell mapping and trellis shaping can easily obtain of the order of 1 dB of shaping gain.

For moderate coding gains at moderate complexity, the two principal classes of packings are
lattices and trellis codes, which are analogous to block and convolutional codes, respectively.
By now the principles of construction of the best such codes are well understood, and it seems
likely that the best codes have been found. We plot the effective coding gains of these known
moderate-complexity lattices and trellis codes versus the branch complexity of their minimal
trellises, assuming ML decoding. Trellis codes are somewhat superior, due mainly to their lower
error coefficients.

We briefly mention higher-performance schemes, including multilevel schemes with multistage
decoding and bit-interleaved coded modulation, which allow the use of high-performance binary
codes such as those described in the previous chapter to approach capacity.
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192 CHAPTER 14. INTRODUCTION TO LATTICE AND TRELLIS CODES

14.1 Lattices

It is clear from Shannon’s capacity theorem that an optimal block code for a bandwidth-limited
AWGN channel consists of a dense packing of code points within a sphere in a high-dimensional
Euclidean space. Most of the densest known packings are lattices.

In this section we briefly describe lattice constellations, and analyze their performance using
the union bound estimate and large-constellation approximations.

An n-dimensional (n-D) lattice A is a discrete subset of n-space R™ that has the group property.
Without essential loss of generality, A may be assumed to span R"™. The points of the lattice
then form a uniform infinite packing of R".

Example 1. The set of integers Z is a one-dimensional lattice, since Z is a discrete subgroup
of R. Any 1-dimensional lattice is of the form A = aZ for some scalar a > 0. 0

Example 2. The integer lattice Z™ (the set of integer n-tuples) is an n-dimensional lattice for
any n > 1. O

Example 3. The hezagonal lattice Ay = {a(1,0) + b(3, @) | (a,b) € Z?} is illustrated in
Figure 1. This lattice is the densest packing of R?. Ol

Figure 1. The hexagonal lattice As.

Exercise 1. Let C be an (n, k,d) binary linear block code. Show that
Ae={x€Z" | x=cmod 2 for some c € C} (14.1)

is an n-dimensional sublattice of Z" (called a “Construction A” or “mod-2” lattice).

A general n-dimensional lattice A that spans R™ may be characterized by a set of linearly
independent generators G = {g;, 1 < j < n} such that A is the set of all integer linear
combinations of the generators:

A ={aG = Zajgj |laeZ"}. (14.2)
J

Thus A may be viewed as the image of the integer lattice Z™ under a linear transformation of
n-space R™ by the linear operator G, as illustrated by Figure 1.

By the group property of A, any translate A + x by a lattice point x € A is just A again.
This implies that a lattice is “geometrically uniform;” every point of the lattice has the same
number of neighbors at each distance, and all decision regions of a minimum-distance decoder
(“Voronoi regions”) are congruent and form a tessellation of R™. Indeed, any lattice translate
A + t is geometrically uniform.



14.1. LATTICES 193

The key geometrical parameters of a lattice are:

e the minimum squared distance d> . (A) between lattice points;
e the kissing number Kpin(A) (the number of nearest neighbors to any lattice point);

e the volume V(A) of n-space per lattice point. As indicated in Figure 1, this volume is the
volume of the fundamental parallelotope

0,1)"G = {aG |a € [0,1)"}.

Since the volume of the n-cube [0,1)" is 1 and the Jacobian of the linear transformation G is
its determinant |G|, it follows that V(A) = |G| for any generator matrix G of A.

The Hermite parameter of A is the normalized density parameter

Ye(A) = ‘Wl (14.3)

which we will shortly identify as its nominal coding gain. The quantity V (A)%/"

of as the normalized volume of A per two dimensions.

may be thought

Example 3 (cont.) For the hexagonal lattice Az, the minimum squared distance is d2; (A2) =
1, the kissing number is Kyin(A2) = 6, the volume is V/(A2) = v/3/2, and the Hermite parameter
is 7. (A2) = 2/v/3 = 1.155 (0.62 dB). Therefore Aj is denser than the integer lattice Z2, for which
diin(2%) = V(2%) = 7c(Z%) = 1. O

Exercise 1 (cont.) Show that if C is an (n, k, d) binary linear block code with Ny weight-d
words, then the mod-2 lattice A¢ has the following geometrical parameters:

dpin(Ac) = min{d, 4}; (14.4)

20N, if d < 4;
ijn(Ac) = 2n, if d > 4; (14.5)

29Ny + 2n, if d = 4;
V(Ae) = 2"7H (14.6)

d?nin(AC)

Ve (AC) - 277(C) ’ (147)
where 1(C) = 2(n — k)/n is the redundancy of C in bits per two dimensions. O

Exercise 2. Show that 7.(A) is invariant to scaling, orthogonal transformations, and Cartesian
products; i.e., Y.(@UA™) = 7.(A), where a > 0 is any scale factor, U is any orthogonal matrix,
and m > 1 is any positive integer. Show that v.(aUZ™) = 1 for any version aUZ" of any integer
lattice Z™. O
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14.2 Lattice constellations

A lattice constellation

C(AR)=(A+t)NR (14.8)

is the finite set of points in a lattice translate A + t that lie within a compact bounding region
R of n-space.

Example 4. An M-PAM constellation a{£1,+3,...,+(M — 1)} is a one-dimensional lattice
constellation C(2aZ, R) with A +t = 2a(Z + 1) and R = [—aM, aM]. O

The key geometric properties of the region R are

o its volume V(R) = [}, dx;

e the average energy P(R) per dimension of a uniform probability density function over R:

Ix[* dx
PR)= | —/ ——. 14.9
The normalized second moment of R is defined as the dimensionless parameter
P(R)
GR)=———. 14.10
)= Soryn (14.10)

Example 4 (cont.). The key geometrical parameters of R = [—aM,aM] are V(R) = 2aM,
P(R) =a?M?/3, and G(R) = 1/12. O
Exercise 3. Show that G(R) is invariant to scaling, orthogonal transformations, and Cartesian
products; i.e., G(aUR™) = G(R), where o > 0 is any scale factor, U is any orthogonal matrix,
and m > 1 is any positive integer. Show that G(aU[—1,1)") = 1/12 for any version aU[—1,1)"
of any n-cube [—1,1)" centered at the origin. O

For performance analysis of large lattice constellations, one may use the following approxima-
tions, the first two of which are together known as the continuous approrimation:

e The size of the constellation is (R)
CIA,R)| ~ ——=; 14.11
| ( ) )’ ‘7( /\ ) b ( )

e The average energy per dimension of a uniform discrete distribution over C(A, R) is

P(C(A,R)) ~ P(R); (14.12)

e The average number of nearest neighbors to any point in C(A, R) is & Kmin(A).
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Again, the union bound estimate (UBE) on probability of block decoding error is

2
Pr(E) &~ Kunin(A)QV (C%g[\)) . (14.13)

Since

2 2 V(R)
P=7 log, [C(A, R)| ~ Elogz m7
o o
SNR _ V(A)¥"™ P(R)

20 V(R)2n o2

SNRnorm ~

we may write the UBE as
Pr(E) ~ Kumin(A)QV (7c(A)75(R) (3 SNRuorm)) , (14.14)

where the nominal coding gain of A and the shaping gain of R are defined respectively as

_ d?nln(A)
Ye(A) = V(A2 (14.15)
15(R) = VR 1/12 (14.16)

12P(R)  G(R)

For a baseline M-PAM constellation with A = 2aZ and R = [—aM, aM], we have v.(A) =
vs(R) =1 and Kpin(A) = 2, so the UBE reduces to the baseline expression

Pr(E) ~ 2QV (3 SNRyorm)-

The nominal coding gain 7.(A) measures the increase in density of A over the baseline integer
lattice Z (or Z™). The shaping gain ~s(R) measures the decrease in average energy of R relative
to an interval [—«a, a] (or an n-cube [—a, a]™). Both contribute a multiplicative factor of gain
to the argument of the QV/(-) function.

As before, the effective coding gain is reduced by the error coefficient Ky, (A). The probability
of block decoding error per two dimensions is

Py(E) = Ks(A)QV (7:(A)75(R)(3 SNRuorm)) (14.17)

in which the normalized error coefficient per two dimensions is Ks(A) = 2K nin(A)/n.

Graphically, a curve of the form Py(E) ~ Kg(A)QV (Ye(A)ys(R)(3 SNRporm)) may be obtained
simply by moving the baseline curve Ps(E) = 4QV (3 SNRporm) to the left by 7.(A) and 5(R)
(in dB), and upward by a factor of K (A)/4. Such simple manipulations of the baseline curve
as a function of 7.(A), 7s(R) and K(A) again are an easy and useful design tool for lattice
constellations of moderate complexity.
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14.3 Shaping gain and shaping techniques
Although shaping is a newer and less important topic than coding, we discuss it first because

its story is quite simple.

The n-dimensional shaping region R that minimizes G(R) is obviously an n-sphere. The key
geometrical parameters of an n-sphere of radius r (for n even) are:

Tr2)n/2
Vg (n,r) ((n/)2)' ;
2
Pg(n,r) = m;
Gotnr) = Lol _ (/22"

Vg (n,r)2/m m(n+2)

By Stirling’s approximation, m! — (m/e)™ as m — oo, which implies

1
Go(n,r) — 5
1/12 e
o) = —2= % (153 dB).
() Go(n,r) 6 (1.53 dB)

Thus shaping gain is limited to a finite value as n — oo, namely 7e/6 (1.53 dB), which is called
the ultimate shaping gain.

The shaping gain of an n-sphere is plotted for dimensions n < 24 in Figure 2. Note that the
shaping gain of a 16-sphere already exceeds 1 dB.
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Figure 2. Shaping gains of n-spheres for n < 24.

The projection of a uniform probability distribution over an n-sphere onto one or two
dimensions is a nonuniform probability distribution that approaches a Gaussian distribution
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as n — o0o. The ultimate shaping gain of 7e/6 (1.53 dB) may alternatively be derived as the
difference between the average power of a uniform distribution over an interval and that of a
Gaussian distribution with the same differential entropy.

Shaping thus induces a Gaussian-like probability distribution on a one-dimensional PAM or
two-dimensional QAM constellation, rather than an equiprobable distribution. In principle, with
spherical shaping, the lower-dimensional constellation will become arbitrarily large, even with
fixed average power. In practice, the lower-dimensional constellation is constrained by design to
a certain region R to limit “shaping constellation expansion.” The n-dimensional shape then only
approximates spherical shaping subject to this constraint, and the lower-dimensional probability
distribution approaches a truncated Gaussian distribution within the region R.

With large constellations, shaping can be implemented almost independently of coding by
operations on the “most significant bits” of M-PAM or (M x M)-QAM constellation labels,
which affect the gross shape of the n-dimensional constellation. In contrast, coding affects the
“least significant bits” and determines fine structure.

Two practical schemes that can easily obtain shaping gains of 1 dB or more while limiting 2D
shaping constellation expansion to a factor of 1.5 or less are “trellis shaping,” a kind of dual to
trellis coding, and “shell mapping,” which uses generating-function techniques to enumerate the
points in a Cartesian product constellation in approximate increasing order of energy.

14.4 Coding gains of dense lattices

Finding the densest lattice packings in a given number of dimensions is a mathematical problem
of long standing. A summary of the densest known packings is given in [Conway and Sloane,
Sphere Packings, Lattices and Groups]. The nominal coding gains of these lattices in up to 24
dimensions is plotted in Figure 3.

6
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Figure 3. Nominal coding gains of densest lattices in dimensions n < 24.
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In contrast to shaping gain, the nominal coding gains of dense n-dimensional lattices become
infinite as n — oo.

Example 5 (Barnes-Wall lattices). For all integer m > 0, there exists a 2™"!-dimensional
Barnes-Wall lattice BWym+1 whose nominal coding gain is 2"/? (see next subsection). The two-
dimensional BW lattice is Z2. In 4, 8, and 16 dimensions the BW lattices (denoted by Dy, Eg
and Ajg, respectively) are the densest lattices known. For large m, considerably denser lattices
are known. Ll

Exercise 1 (cont.) Show that the mod-2 lattices corresponding to the (4,3,2) and (4,1,4)
binary linear block codes have coding gain 2'/2 (1.51 dB); these lattices are in fact versions
of Dy. Show that the mod-2 lattice corresponding to the (8,4,4) binary linear block code has
coding gain 2 (3.01 dB); this lattice is in fact a version of Fg. Show that no mod-2 lattice has
a nominal coding gain more than 4 (6.02 dB). O

However, effective coding gains cannot become infinite. Indeed, the Shannon limit shows that
no lattice can have a combined effective coding gain and shaping gain greater than 9 dB at
P,(E) ~ 1075. This limits the maximum possible effective coding gain to 7.5 dB, since shaping
gain can contribute up to 1.53 dB.

What limits effective coding gain is the number of near neighbors, which becomes very large
for high-dimensional dense lattices.

Example 5 (cont.) The kissing number of the 2" !-dimensional Barnes-Wall lattice is

Kuin(BWome) =[] (2" +2).

1<i<m+1

For m =0,1,2,3,4,... these numbers are 4, 24, 240, 4320, 146880, .... Thus while BW3s has a
nominal coding gain of 4 (6.02 dB), its kissing number is 146880, so its effective coding gain by
our rule of thumb is only about 3.8 dB. BWjsg has a nominal coding gain of 8 (9.03 dB), but a
kissing number of 1260230400, so its effective coding gain by our rule of thumb is only about
4.6 dB. These calculations indicate how the effective coding gain of higher-dimensional lattices
eventually saturates. O

Example 6 (Leech Lattice). The Leech lattice Loy, a remarkably dense lattice in 24 dimen-
sions, has a nominal coding gain of 4 (6.02 dB), but it has a kissing number of 196560, so its
effective coding gain by our rule of thumb is only about 3.6 dB. O

14.4.1 Barnes-Wall lattices

The Barnes-Wall lattices (1959) are an infinite family of n-dimensional lattices that are analogous
to the Reed-Muller binary block codes. For n < 16, they are the best lattices known. For greater
n, they are not in general the best lattices known, but in terms of performance vs. decoding
complexity they are still quite good, since they admit relatively simple decoding algorithms.

For any integer m > 0, there exists an (n = 2™*!)-dimensional BW lattice, denoted
BWym+1, that has minimum squared Euclidean distance dfnin(BWQmH) = 2™ normalized vol-

ume V(BWam+1)?/™ = 2™/2and therefore nominal coding gain ~.(BWam+1) = 27/2,

In 2 dimensions, the Barnes-Wall lattice BW5 is the integer lattice Z2, which is the mod-2
lattice corresponding to the (2,2,1) code.
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The mod-2 lattice RZ? corresponding to the (2, 1,2) code is a sublattice of Z?; it is the set of
all integer 2-tuples in which both integers are even or both integers are odd. It can be obtained
by rotating Z? by 45° and scaling by v/2; i.e., by transforming Z? by the 2 x 2 Hadamard matrix

[} 1)

Consequently d2. (RZ?) = 2 and V(RZ?) = 2.

min
The lattice 272 (the mod-2 lattice corresponding to the (2,0, 00) code) is a sublattice of RZ?
with d2; (27%) = 4 and V(2Z?) = 4. Note that 272 = R(RZ?), since R? = 21I.

min
In fact, we see that there is a lattice chain Z2/RZ? /272 /2 RZ*/4Z?/ . .. with minimum squared
distances 1/2/4/8/16/ .. ..

The remaining BW lattices may be constructed recursively from this chain by the |u|u + v
construction. BWym+1 is constructed from BWom and RBWom as

BWym+1 = {(u,u+v) | u € BWayn,v € RBWym}.

More generally, for any j > 0, R BWym+1 = {(w,u+v) | u € R"BWym,v € RIT1BWym}.
It is then easy to prove the following facts by recursion:
(a) The dimension of BWym41 is n = 2mF1,
(b) The volume of BWym+1 is
V(BWyms1) = V(BWam )V (R(BWam)) = 22"V (BWam)2.
This recursion yields V(BWam+1) = 22" or V(BWam1)¥/™ = 2m/2,

(c) The minimum squared distance of BWym+1 is d2; (BWam+1) = 2™.

(d) {R/BWaym+1,j > 1} is a chain of sublattices with minimum squared distances and normal-
ized volumes increasing by a factor of 2 for each increment of j.

We verify that these assertions hold for BW, = Z2. For m > 1, the dimension and volume follow
from the construction. We verify the distance as follows:

(a) if u =0, then [|(0,v)|> = ||v||> > 2™ if v # 0, since v € RBWam.

(b) ifu+v =0, then u=—v € RBWam and ||(—v,0)||? > 2™ if v # 0.

(¢) if u# 0 and u+ v # 0, then both u and u+ v are in BWam (since RBWam is a sublattice

of BWam), so
1w, u+v)[[* = [[ul* + [lu+ v][* > 2. 2771 = 2™,

Equality clearly holds for (0,v), (v,0) or (u,u) if we choose v or u as a minimum-weight vector
from their respective lattices.

Finally, the sublattice chain for m follows from the sublattice chain for m — 1 by construction.



200 CHAPTER 14. INTRODUCTION TO LATTICE AND TRELLIS CODES

The |u|u + v| construction suggests the following tableau of BW lattices. Here Dy = BWjy,
Eg = BWs, and A, = BW,, for n = 2™ > 16. Also, we use R? = 2Iym.

Z2
Dy
R7? FEyg
RD, Ase
27,2 RE3 Ass
2Dy RAq6 Aes
2R7? 2Fg RA3p Aiog
2RD4 2A16 RA64 A256
422 2RE8 2A32 RA128 A512

Figure 4. Tableau of Barnes-Wall lattices.

In this tableau each BW lattice lies halfway between the two lattices of half the dimension that
are used to construct it in the |u|u + v| construction, from which we can immediately deduce its
normalized volume.

For example, Fg has the same normalized volume as RZ?, namely V(FEg)*® = 2. However,
d2. (Eg) = 4, whereas d?, (RZ?) = 2. Therefore the nominal coding gain of Ej is twice that of

RZ?, namely v.(Eg) = 2 (3.01 dB).

14.5 Trellis codes

Trellis codes are dense packings of Euclidean-space sequences in a sequence space which is in prin-
ciple infinite-dimensional. Trellis codes are to lattices as convolutional codes are to block codes.
We will see that, just as binary convolutional codes provide a better performance/complexity
tradeoff than binary block codes in the power-limited regime, trellis codes provide a better
performance/complexity tradeoff than lattices in the bandwidth-limited regime, although the
difference is not as dramatic.

The key ideas in the invention of trellis codes were:

e use of minimum squared Euclidean distance as the design criterion;

e coding on subsets of signal sets using convolutional coding principles (e.g., trellises and the
Viterbi algorithm).

A typical large-constellation trellis code is designed as follows. One starts with a large low-
dimensional constellation, which in practice is almost always a lattice constellation C(Z",R)
based on a version of an n-dimensional integer lattice Z", such as M-PAM or (M x M)-QAM.
(M-PSK constellations are sometimes used in the intermediate (p ~ 2 b/2D) regime because of
their constant-energy property, but we will not discuss M-PSK trellis codes here.)

One can then form an m-fold Cartesian product constellation
c(z",R)™ =C(z™,R™),

which is still based on an mn-dimensional integer lattice Z™".
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The constellation C(Z™",R™) is partitioned into subsets of equal size, where the number
of subsets is typically a power of two, say 2. Initially this was done by a sequence of two-
way partitions in which the minimum squared distance within subsets was maximized at each
level. Subsequently it was recognized that the resulting constellations were almost always lattice
constellations C(A/, R™) based on a sublattice A’ of index |Z™"/A’| = 2 in Z™". In other words,
Z™" is the union of 2% cosets of A’, and the 2° subsets are the points of C(Z™", R™) that lie in
each such coset. The sublattice A’ is usually chosen to be as dense as possible.

Example 7 (1D partitions). In one dimension, there is a chain of sublattices of Z as follows:
7227247 2872 D - -,

which may alternatively be written as Z/2Z/47Z/8Z/ - --. Each partition is two-way; that is,
each lattice is the union of two cosets of the next sublattice. The corresponding minimum
squared distances are 1/4/16/64/---. Thus an M-PAM constellation C(Z, [-M /2, M/2]) with
minimum squared distance 1 may be partitioned into 2 subsets of the form C(2Z,[—-M /2, M /2])
with minimum squared distance 4 within subsets, or 4 subsets of the form C(4Z, [-M /2, M/2])
with minimum squared distance 16 within subsets, and so forth. O

Example 8 (2D partitions). In two dimensions, there is a chain of sublattices of Z? as follows:
Z? D RZ?* D 27* D2R7*D - -,

where R is the 2 x 2 Hadamard matrix as above. This chain may alternatively be written
as Z2/R72/272/2R7?/ - --. Each partition is two-way. The corresponding minimum squared
distances are 1/2/4/8/---. Thus a QAM constellation C(Z?, R) with minimum squared distance
1 may be partitioned into 2 subsets of the form C (RZ2, R) with minimum squared distance 2
within subsets, or 4 subsets of the form C(2Z2, R) with minimum squared distance 4 within
subsets, and so forth. The bounding region R should contain an equal number of points in each
subset. O

Example 9 (4D partitions). In four dimensions, there is a chain of sublattices of Z* as follows:
Z* 2Dy D RZ* D RDy D -+,

where D, is the 4-dimensional Barnes-Wall lattice and R is the 4 x 4 matrix

1 10 O
1 -1 0 O
r= 0 01 1
0 01 -1

(Alternatively, this is the chain of mod-2 lattices corresponding to the (4,4,1), (4,3,2),
(4,2,2) and (4,1,4) binary linear block codes.) This chain may alternatively be written as
7Z4/Dy/RZ*/RDy/ - --. Each partition is two-way. The corresponding minimum squared dis-
tances are 1/2/2/4/---. Thus a 4D constellation C(Z*, R) with minimum squared distance 1
may be partitioned into 2 subsets of the form C(Dy, R) with minimum squared distance 2 within
subsets, 8 subsets of the form C(2D4, R) with minimum squared distance 4 within subsets, etc.
Again, the bounding region R should contain an equal number of points in each subset. O
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A trellis code encoder then operates as shown in Figure 5. Some of the input data bits are
encoded in a rate-k/b 2”-state binary convolutional encoder. Almost always k is chosen to equal
b—1, so the code redundancy is 1 bit per mn dimensions. The encoder output sequence of b-tuples
selects a corresponding sequence of subsets of C(Z™",R™) (cosets of A’). The convolutional
code and the labeling of the subsets are chosen primarily to maximize the minimum squared
distance dein(C) between signal point sequences in any possible encoded subset sequence, and
secondarily to minimize the maximum possible number Kp,;,(C) of nearest-neighbor sequences.
Finally, other input data bits select the actual signal points to be transmitted from the selected

subsets. If there is any shaping, it is done at this level.

input | Encoder for coded data | Map from
W convolutional (label sequence) labels to subsets
code C (cosets of A')

subset sequence

v

other input data (uncoded) Select signal signal point
points from
subsets

\ 4

. \
sequence in C

Figure 5. Trellis code encoder.

The nominal coding gain of such a trellis code is

%e(C) = dy, (€277, (14.18)

min
where n(C) = 2/mn is the redundancy of the convolutional code in bits per two dimensions. The
factor 27(©) may be thought of as the normalized volume of the trellis code per two dimensions,
if the signal constellation is a lattice constellation based on an integer lattice Z™". The effective
coding gain is reduced by the amount that the error coefficient 2Ky,in(C)/mn per two dimensions
exceeds the baseline M-PAM error coefficient of 4 per two dimensions, again according to the
rule of thumb that a factor of 2 increase costs 0.2 dB.

Exercise 1 (cont.) Let C be a rate-k/n binary linear convolutional code with free distance
d and Ny minimum-weight code sequences per n dimensions. Define the corresponding mod-
2 trellis code A¢ to be the set of all integer sequences x with D-transform z(D) such that
x(D) = ¢(D) mod 2 for some code sequence ¢(D) in C.

(a) Show that an encoder as in Figure 5 based on the convolutional code C and the lattice
partition Z™/2Z" is an encoder for this mod-2 trellis code.

(b) Show that A¢ has the group property.
(c) Show that A¢ has the following parameters:

dpin(Ac) = min{d,4}; (14.19)
29Ny, if d < 4;
Kumin(Ac) = 2n, if d > 4; (14.20)

29Ny +2n, ifd=4;
Ye(Ae) = diin(Ac)277O), (14.21)
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where 7(C) = 2(n — k)/n is the redundancy of C in bits per two dimensions. O

The encoder redundancy 7n(C) also leads to a “coding constellation expansion ratio” which
is a factor of 27(¢) per two dimensions—i.e., a factor of 4,2,v/2,... for 1D, 2D, 4D,... codes,
respectively. Minimization of coding constellation expansion has motivated the increasing use
of higher-dimensional trellis codes.

A trellis code may be decoded by a Viterbi algorithm (VA) decoder, as follows. Given a received
point r in R™" the received first finds the closest signal point to r in each subset. A VA decoder
then finds the closest code sequence to the entire received sequence. The decoding complexity
is usually dominated by the complexity of the VA decoder, which to first order is dominated by
the branch complexity 2“+* of the convolutional code, normalized by the dimension mn.

6
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Figure 6. Effective coding gain vs. complexity for Ungerboeck and Wei codes.

Figure 6 shows the effective coding gains of certain important families of trellis codes versus
their decoding complexity, measured by a detailed operation count. The codes considered are:

(a) The original 1D (PAM) trellis codes of Ungerboeck (1982), which are based on rate-1/2
convolutional codes (n(C) = 2) with 2 < v <9 and the 4-way partition Z/47Z.

(b) The 2D (QAM) trellis codes of Ungerboeck, which (apart from the simplest 4-state code)
are based on rate-2/3 convolutional codes (n(C) = 1) with 3 < v < 9 and the 8-way partition
7% /2R72.

(c¢) The 4D trellis codes of Wei (1987), all with n(C) = 1/2, based on

(a) rate-2/3 8- and 16-state convolutional codes and the 8-way partition Z*/RDy;
(b) a rate-3/4 32-state convolutional code and the 16-way partition Z*/27Z%;
(c) a rate-4/5 64-state convolutional code and the 32-way partition Z*/2Dj.

(d) Two families of 8D trellis codes of Wei (n(C) = 1/4).
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The V.32 modem (1984) uses an 8-state 2D trellis code, also due to Wei (1984), whose per-
formance/complexity tradeoff is the same as that as that of the original 8-state 2D Ungerboeck
code, but which uses a nonlinear convolutional encoder to achieve 90° rotational invariance.
This code has an effective coding gain of about 3.6 dB, a branch complexity of 25 (per two
dimensions), and a coding constellation expansion ratio of 2.

The V.34 modem (1994) specifies three 4D trellis codes, with performance and complexity
equivalent to the 4D Wei codes circled on Figure 6. All have a coding constellation expansion
ratio of v/2. The 16-state code is the original 16-state 4D Wei code, which has an effective coding
gain of about 4.2 dB and a branch complexity of 26 (per four dimensions). The 32-state code is
due to Williams and is based on the 16-way partition Z*/HZ*, where H is a 4 x 4 Hadamard
matrix, to ensure that there are no minimum-distance error events whose length is only two
dimensions; it has an effective coding gain of about 4.5 dB and a branch complexity of 28 (per
four dimensions) The 64-state code is a modification of the original 4D Wei code, modified to
prevent quasicatastrophic error propagation; it has an effective coding gain of about 4.7 dB and
a branch complexity of 2'° (per four dimensions).

It is noteworthy that no one has improved on the performance vs. complexity tradeoff of the
original 1D and 2D trellis codes of Ungerboeck or the subsequent multidimensional codes of Wei,
and by this time it seems safe to predict that no one will ever do so. There have however been
new trellis codes that enjoy other properties with about the same performance and complexity,
such as those described in the previous two paragraphs, and there may still be room for further
improvements of this kind.

Finally, we see that trellis codes have a performance/complexity advantage over lattice codes,
when used with maximum-likelihood decoding. Effective coding gains of 4.2—4.7 dB, better than
that of the Leech lattice Loy or of BWsg, are attainable with less complexity (and much less
constellation expansion). 512-state 1D or 2D trellis codes can achieve effective coding gains of
the order of 5.5 dB, which is superior to that of lattice codes of far greater complexity.

On the other hand, it seems very difficult to obtain effective coding gains of greater than 6 dB.
This is not surprising, because at Ps(FE) ~ 107¢ the effective coding gain at the Shannon limit
would be about 7.5 dB, and at the cutoff rate limit it would be about 5.8 dB. To approach the
Shannon limit, much more complicated codes and decoding methods are necessary.

14.6 Sequential decoding in the high-SNR regime

In the bandwidth-limited regime, the cutoff rate limit is a factor of 4/e (1.68 dB) less than
capacity. Therefore sequential decoders should be able to operate within about 1.7 dB of the
Shannon limit; i.e., sequential decoders should be able to achieve an effective coding gain of
about 6 dB at P,(E) ~ 1076, Several theses (Wang, Ljungberg, Maurer) have confirmed that
sequential decoders are indeed capable of such performance.

14.7 Multilevel codes and multistage decoding

To approach the Shannon limit even more closely, it is clear that much more powerful codes
must be used, with non-ML but near-ML decoding. Multilevel codes and multistage decoding
may be used for this purpose. Multilevel coding may be based on a chain of sublattices of Z",
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A =Z"2DOA 2--- DA 1 DA,

which induce a chain of lattice partitions Aj_1/A;, 1 < j <r. A different encoder as in Figure 5
may be used independently on each such lattice partition. Moreover, with multistage decoding,
each level is decoded independently.

Remarkably, such a multilevel scheme incurs no loss in channel capacity, compared to a single-
level code based on the partition Z"/A,; the capacity C(Z"/A,) of the partition Z"/A, is equal
to the sum of the capacities C(A;_1/A;) at each level. If the partition Z" /A, is “large enough”
and appropriately scaled, then C(Z"/A,) approaches the capacity of the Gaussian channel.

All of the partitions A;_1/A; may even be binary; e.g., one may use the standard one-
dimensional or two-dimensional chains

Z2O2LDOAZD8L D -+
72 D RZ? D272 D2R7Z? D 47% D - ...

Then one can use a binary code of rate close to C'(A;_1/A;) at each level to approach the
Shannon limit.

In particular, by using binary turbo codes of appropriate rate at each level, it has been shown
that one can get within 1 dB of the Shannon limit (Wachsmann and Huber).

Powerful probabilistic coding methods such as turbo codes are really needed only at the higher
levels. At the lower levels, the channels become quite clean and the capacity C(A;—1/A;j)
approaches logy |A;_1/A;j|, so that the desired redundancy approaches zero. For these levels,
algebraic codes and decoding methods may be more appropriate.

In summary, multilevel codes and multistage decoding allow the Shannon limit to be ap-
proached as closely in the bandwidth-limited regime as it can be approached in the power-limited
regime with binary codes.

14.8 Multilevel turbo codes

A number of varieties of multilevel turbo codes based on multiple component trellis codes
have been developed for the bandwidth-limited regime by several authors (e.g., Berrou et al.,
Benedetto et al., Robertson and Wérz, Divsalar et al.). The performance of these codes seems
to be comparable to that of binary turbo codes in the power-limited regime: i.e., within about
1 dB of the Shannon limit. However, such capacity-approaching codes do not seem to have been
implemented yet in practice, to the best of our knowledge.

14.9 Bit-interleaved coded modulation

In bit-interleaved coded modulation (BICM), the signals in a nonbinary constellation of size 2°
are selected by b randomly interleaved encoded bits from a binary encoder. The effective binary
channel is then an equiprobable mixture of b parallel channels. The receiver knows which channel
is used for each bit, and therefore can compute the correct APP vector for each symbol. Capacity-
approaching codes may be designed for this mixture channel. While capacity is typically slightly
reduced on an AWGN channel, the “pragmatic” BICM approach has become quite popular.
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