MIT OpenCourseWare http://ocw.mit.edu

6.189 Multicore Programming Primer, January (IAP) 2007

Please use the following citation format:

Saman Amarasinghe, *6.189 Multicore Programming Primer, January (IAP) 2007*. (Massachusetts Institute of Technology: MIT OpenCourseWare). <u>http://ocw.mit.edu</u> (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

6.189 IAP 2007

Lecture 11

Parallelizing Compilers

Prof. Saman Amarasinghe, MIT. 1 6.189 IAP 2007 MIT

Outline

●**Parallel Execution**

- ●Parallelizing Compilers
- ●Dependence Analysis
- ●Increasing Parallelization Opportunities
- ●Generation of Parallel Loops
- ●Communication Code Generation

Types of Parallelism

- ● Instruction Level Parallelism (ILP)
- \rightarrow Scheduling and Hardware
- ●Task Level Parallelism (TLP)
- \rightarrow Mainly by hand
- ● Loop Level Parallelism (LLP) or Data Parallelism
	- \rightarrow Hand or Compiler Generated

- ●Pipeline Parallelism
- \bullet Divide and Conquer **Parallelism**
- \rightarrow Hardware or Streaming
- \rightarrow Recursive functions

Why Loops?

- 90% of the execution time in 10% of the code • Mostly in loops
- If parallel, can get good performance
	- **Load balancing**
- ●Relatively easy to analyze

Programmer Defined Parallel Loop

\bullet FORALL

- No "loop carried
- **•** Fully parallel
- \bullet FORACROSS
- **Branch Some "loop carried"** dependences" dependences"

Parallel Execution

```
● Example
  FORPAR I = 0 to N
     A[I] = A[I] + 1
```

```
● Block Distribution: Program gets mapped into
  Iters = ceiling(N/NUMPROC);
  FOR P = 0 to NUMPROC-1FOR I = P*Iters to MIN((P+1)*Iters, N)A[I] = A[I] + 1
```

```
● SPMD (Single Program, Multiple Data) Code
   If(myPid 
== 0) {
```

```
… Iters = ceiling(N/NUMPROC); 
}
Barrier();
FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
   A[I] = A[I] + 1
Barrier();
```


Parallel Execution

```
● Example
  FORPAR I = 0 to N
      A[I] = A[I] + 1
```

```
● Block Distribution: Program gets mapped into
  Iters = ceiling(N/NUMPROC);
  FOR P = 0 to NUMPROC-1 FOR I = P*Iters to MIN((P+1)*Iters, N)A[I] = A[I] + 1
```

```
● Code that fork a function
   Iters = ceiling(N/NUMPROC);
   ParallelExecute(func1); 
   … void func1(integer myPid)
   { 
      FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
        A[I] = A[I] + 1
   }
```
Outline

- Parallel Execution
- **Parallelizing Compilers**
- ●Dependence Analysis
- ●Increasing Parallelization Opportunities
- Generation of Parallel Loops
- ●Communication Code Generation

Parallelizing Compilers

● Finding FORALL Loops out of FOR loops

```
● Examples
  FOR I = 0 to 5A[I+1] = A[I] + 1
  FOR I = 0 to 5A[I] = A[I+6] + 1
  For I = 0 to 5A[2*I] = A[2*I + 1] + 1
```
- ●N deep loops \rightarrow n-dimensional discrete cartesian space
	- Normalized loops: assume step size = 1 0

FOR I = 0 to 6FOR $J = I$ to 7

- \bullet Iterations are represented as coordinates in iteration space
	- i $=$ $[i_1, i_2, i_3, \ldots, i_n]$

- ●N deep loops \rightarrow n-dimensional discrete cartesian space
	- Normalized loops: assume step size = 1 \bigcap

FOR I = 0 to 6 FOR J = I to 7

- \bullet Iterations are represented as coordinates in iteration space
- \bullet Sequential execution order of iterations **→ Lexicographic order** [0,0], [0,1], [0,2], …, [0,6], [0,7], $[1,1], [1,2], \ldots, [1,6], [1,7],$ $[2,2], \ldots, [2,6], [2,7],$ [6,6], [6,7],

Prof. Saman Amarasinghe, MIT. 11 1 6.189 IAP 2007 MIT

- ●N deep loops \rightarrow n-dimensional discrete cartesian space
	- Normalized loops: assume step size = 1 \bigcap

FOR I = 0 to 6FOR $J = I$ to 7

- \bullet Iterations are represented as coordinates in iteration space
- \bullet Sequential execution order of iterations \rightarrow Lexicographic order
- \bullet \bullet Iteration i $\overline{}$ $\overline{}$ is lexicograpically less than j $\overline{}$ $\overline{}$, i $\overline{}$ $\overline{}$ < j $\overline{}$ iff there exists c s.t. $i_1 = j_1$, $i_2 = j_2,...$ $i_{c-1} = j_{c-1}$ and $i_c < j_c$

- \bullet N deep loops \rightarrow n-dimensional discrete cartesian space
	- Normalized loops: assume step size = 1 \bigcap

FOR I = 0 to 6 FOR J = I to 7

- \bullet An affine loop nest
	- Loop bounds are integer linear functions of constants, loop constant variables and outer loop indexes
	- **Array accesses are integer linear functions** of constants, loop constant variables and loop indexes

- \bullet N deep loops \rightarrow n-dimensional discrete cartesian space
	- $\overline{}$ Normalized loops: assume step size = 1

FOR I = 0 to 6 FOR J = I to 7

●Affine loop nest \rightarrow Iteration space as a set of liner inequalities

$$
0 \leq 1
$$

$$
1 \leq 6
$$

$$
1 \leq J
$$

$$
J \leq 7
$$

Prof. Saman Amarasinghe, MIT. 14 14 6.189 IAP 2007 MIT

Data Space

- \bullet M dimensional arrays \rightarrow m-dimensional discrete cartesian space
	- **a** hypercube

Prof. Saman Amarasinghe, MIT. 15 6.189 IAP 2007 MIT

Dependences

- ● True dependence
	- **a =**
		- **= a**
- \bullet Anti dependence
	- **= a**
	- **a =**
- \bullet Output dependence
	- **a =**
	- **a =**
- \bullet Definition: Data dependence exists for a dynamic instance i and j iff
	- **•** either i or j is a write operation
	- **•** i and j refer to the same variable
	- **·** i executes before j
- ●How about array accesses within loops?

Outline

- Parallel Execution
- **Parallelizing Compilers**
- ●**Dependence Analysis**
- ●Increasing Parallelization Opportunities
- Generation of Parallel Loops
- ●Communication Code Generation

Recognizing FORALL Loops

- ● Find data dependences in loop
	- For every pair of array acceses to the same array
		- If the first access has at least one dynamic instance (an iteration) in which it refers to a location in the array that the second access also refers to i n at least one of the later dynamic instances (iterations). Then there is a data dependence between the statements
	- (Note that same array can refer to itself output dependences)
- ● Definition
	- **Loop-carried dependence:** dependence that crosses a loop boundary
- ●• If there are no loop carried dependences \rightarrow parallelizable

Data Dependence Analysis

- \bullet Example **FOR I = 0 to 5 A[I+1] = A[I] + 1**
- \bullet Is there a loop-carried dependence between A[I+1] and A[I]
	- \blacksquare Is there two distinct iterations i_w and i_r such that A[i_w+1] is the same location as $A[i_r]$
	- ∃integers i_w, i_r 0 ≤ i_w, i_r ≤ 5 i_w ≠ i_r i_w+ 1 = i_r
- \bullet Is there a dependence between A[I+1] and A[I+1]
	- Is there two distinct iterations i_1 and i_2 such that A[i₁+1] is the same location as A[i₂+1]
	- ∃ integers i₁, i₂ 0 ≤ i₁, i₂ ≤ 5 i₁ ≠ i₂ i₁ + 1 = i₂ +1

Integer Programming

- Formulation
	- \exists an integer vector i^- such that $\mathsf{\hat{A}}\mathsf{i}^-$ ≤ b where $\mathsf{\hat{A}}$ is an integer matrix and b $\overline{}$ is an integer vector
- \bullet Our problem formulation for A[i] and A[i+1]
	- ∃ integers i_w, i_r 0 ≤ i_w, i_r ≤ 5 i_w ≠ i_r i_w + 1 = i_r
	- \bullet $\mathsf{i}_\mathsf{w} \neq \mathsf{i}_\mathsf{r}$ is not an affine function
		- divide into 2 problems
		- Problem 1 with $i_w < i_r$ and problem 2 with $i_r < i_w$
		- If either problem has a solution \rightarrow there exists a dependence
	- **•** How about $i_w + 1 = i_r$
		- Add two inequalities to single problem
			- ii_w+ 1 ≤ i_r, and i_r ≤ i_w+ 1

Integer Programming Formulation

• Problem 1

$$
0 \le i_w
$$

\n
$$
i_w \le 5
$$

\n
$$
0 \le i_r
$$

\n
$$
i_r \le 5
$$

\n
$$
i_w < i_r
$$

\n
$$
i_w + 1 \le i_r
$$

\n
$$
i_r \le i_w + 1
$$

1

Integer Programming Formulation

• Problem 1

Integer Programming Formulation

● Problem 1

 \bullet and problem 2 with $i_r < i_w$

Generalization

• An affine loop nest
\n
$$
\begin{aligned}\n\text{For } i_1 &= f_{11}(c_1...c_k) \text{ to } T_{u1}(c_1...c_k) \\
\text{FOR } i_2 &= f_{12}(i_1, c_1...c_k) \text{ to } T_{u2}(i_1, c_1...c_k) \\
&\quad \dots \text{.} \\
\text{FOR } i_n &= f_{1n}(i_1...i_{n-1}, c_1...c_k) \text{ to } T_{un}(i_1...i_{n-1}, c_1...c_k) \\
&\quad \text{A}[f_{al}(i_1...i_n, c_1...c_k), f_{al}(i_1...i_n, c_1...c_k), \dots, f_{an}(i_1...i_n, c_1...c_k)]\n\end{aligned}
$$

●Solve 2*n problems of the form

$$
- i_1 = j_1, i_2 = j_2, \dots, i_{n-1} = j_{n-1}, i_n < j_n
$$

\n
$$
- i_1 = j_1, i_2 = j_2, \dots, i_{n-1} = j_{n-1}, j_n < i_n
$$

\n
$$
- i_1 = j_1, i_2 = j_2, \dots, i_{n-1} < j_{n-1}
$$

\n
$$
- i_1 = j_1, i_2 = j_2, \dots, j_{n-1} < i_{n-1}
$$

\n
$$
- i_1 = j_1, i_2 < j_2
$$

\n
$$
- i_1 = j_1, j_2 < i_2
$$

\n
$$
- i_1 < j_1
$$

\n
$$
- j_1 < i_1
$$

Prof. Saman Amarasinghe, MIT. 29 29 6.189 IAP 2007 MIT

Multi-Dimensional Dependence

FOR I = 1 to nFOR J = 1 to n A[I, J] = A[I, J-1] + 1

Prof. Saman Amarasinghe, MIT. 30 6.189 IAP 2007 MIT

Multi-Dimensional Dependence

FOR I = 1 to nJFOR J = 1 to nA[I, J] = A[I, J-1] + 1 IFOR I = 1 to n JFOR J = 1 to nA[I, J] = A[I+1, J] + 1 I

Prof. Saman Amarasinghe, MIT. 2007 18: 31 6.189 IAP 2007 MIT

What is the Dependence?

```
FOR I = 1 to n FOR J = 1 to n A[I, J] = A[I-1, J+1] + 1 
FOR I = 1 to n FOR J = 1 to n B[I] = B[I-1] + 1
```


Prof. Saman Amarasinghe, MIT. 2007 18: 32 6.189 IAP 2007 MIT

What is the Dependence?

```
FOR I = 1 to n 
  FOR J = 1 to n A[I, J] = A[I-1, J+1] + 1
```


FOR I = 1 to n FOR J = 1 to n A[I] = A[I-1] + 1

What is the Dependence?

FOR I = 1 to n FOR J = 1 to n A[I, J] = A[I-1, J+1] + 1

FOR I = 1 to n FOR J = 1 to n B[I] = B[I-1] + 1

Outline

- Parallel Execution
- **Parallelizing Compilers**
- Dependence Analysis
- ●**Increasing Parallelization Opportunities**
- Generation of Parallel Loops
- Communication Code Generation

Increasing Parallelization Opportunities

- Scalar Privatization
- ●Reduction Recognition
- ●Induction Variable Identification
- Array Privatization
- ●Interprocedural Parallelization
- Loop Transformations
- ●Granularity of Parallelism

● Example

FOR i = 1 to n

$$
X = A[i] * 3;
$$

B[i] = X;

- Is there a loop carried dependence?
- What is the type of dependence?

Privatization

- ● Analysis:
	- Any anti- and output- loop-carried dependences

```
● Eliminate by assigning in local context
  FOR i = 1 to n
     integer Xtmp;
     Xtmp = A[i] * 3;
     B[i] = Xtmp;
```
 \bullet Eliminate by expanding into an array FOR $i = 1$ to n **Xtmp[i] = A[i] * 3;** $B[i] = Xtmp[i];$

Privatization

- Need a final assignment to maintain the correct value after the loop nest
- Eliminate by assigning in local context

```
FOR i = 1 to n
   integer Xtmp;
  Xtmp = A[i] * 3;
  B[i] = Xtmp;
  if(i == n) X = Xtmp
```

```
● Eliminate by expanding into an array
  FOR i = 1 to n Xtmp[i] = A[i] * 3;
     B[i] = Xtmp[i];
  X = Xtmp[n];
```
• How about loop-carried true dependences?

● Example

FOR $i = 1$ to n

 $X = X + A[i];$

• Is this loop parallelizable?

Reduction Recognition

- Reduction Analysis:
	- Only associative operations
	- The result is never used within the loop

```
• Transformation
  Integer Xtmp[NUMPROC];
  Barrier();
  FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)
       Xtmp[myPid] = Xtmp[myPid] + A[i];
  Barrier();
  If(myPid == 0) {
     FOR p = 0 to NUMPROC-1
       X = X + Xtmp[p];
     …
```
Induction Variables

- Example FOR $i = 0$ to N $A[i] = 2^{\lambda}i;$
- After strength reduction

```
t = 1FOR i = 0 to N
  A[i] = t;
  t = t*2;
```
- What happened to loop carried dependences?
- Need to do opposite of this!
	- **Perform induction variable analysis**
	- Rewrite IVs as a function of the loop variable

Array Privatization

- Similar to scalar privatization
- ● However, analysis is more complex
	- Array Data Dependence Analysis: Checks if two iterations access the same location
	- **Array Data Flow Analysis:** Checks if two iterations access the same value
- ●**Transformations**
	- Similar to scalar privatization
	- Private copy for each processor or expand with an additional dimension

Interprocedural Parallelization

- \bullet Function calls will make a loop unparallelizatble
	- Reduction of available parallelism
	- A lot of inner-loop parallelism
- \bullet **Solutions**
	- **Interprocedural Analysis**
	- **•** Inlining

Interprocedural Parallelization

- \bullet **Issues**
	- Same function reused many times
	- Analyze a function on each trace \rightarrow Possibly exponential
	- Analyze a function once \rightarrow unrealizable path problem
- ● Interprocedural Analysis
	- **Need to update all the analysis**
	- **Complex analysis**
	- Can be expensive
- ●**Inlining**
	- Works with existing analysis
	- Large code bloat \rightarrow can be very expensive

Loop Transformations

- A loop may not be parallel as is
- Example FOR $i = 1$ to $N-1$ FOR $j = 1$ to $N-1$ **A[i,j] = A[i,j-1] + A[i-1,j];**

Loop Transformations

- A loop may not be parallel as is
- Example FOR $i = 1$ to $N-1$ FOR $j = 1$ to $N-1$ **A[i,j] = A[i,j-1] + A[i-1,j];**

J

Granularity of Parallelism

```
● Example
  FOR i = 1 to N-1FOR j = 1 to N-1A[i,j] = A[i,j] + A[i-1,j];
```

```
\bullet Gets transformed into 
  FOR i = 1 to N-1Barrier();
      FOR j = 1+ myPid*Iters 
to MIN((myPid+1)*Iters, n-1)
         A[i,j] = A[i,j] + A[i-1,j];
      Barrier();
```


- Startup and teardown overhead of parallel regions
- **•** Lot of synchronization
- Can even lead to slowdowns

Granularity of Parallelism

●Inner loop parallelism can be expensive

- Solutions
	- **Don't parallelize if the amount of work within the loop is** too small

or

• Transform into outer-loop parallelism

Outer Loop Parallelism

● Example FOR $i = 1$ to $N-1$ FOR $j = 1$ to $N-1$ $A[i, j] = A[i, j] + A[i-1, j];$

```
● After Loop Transpose
   FOR j = 1 to N-1FOR i = 1 to N-1A[i,j] = A[i,j] + A[i-1,j];
```

```
● Get mapped into
```

```
Barrier();
FOR j = 1+ myPid*Iters 
to MIN((myPid+1)*Iters, n-1)
  FOR i = 1 to N-1A[i, j] = A[i, j] + A[i-1, j];Barrier();
```


Outline

- Parallel Execution
- **Parallelizing Compilers**
- Dependence Analysis
- Increasing Parallelization Opportunities
- **Generation of Parallel Loops**
- Communication Code Generation

Generating Transformed Loop Bounds

for
$$
i = 1
$$
 to n do
\n $X[i] = \dots$
\nfor $j = 1$ to $i - 1$ do
\n $\dots = X[j]$

- Assume we want to parallelize
- ●What are the loop bounds?
- Use Projections of the $\left\{ \left\langle p, i, j \right\rangle \right| I$ **Iteration Space**
	- Fourier-Motzkin Elimination Algorithm

$$
\left\{ (p, i, j) \middle| \begin{array}{c} 1 \leq i \leq n \\ 1 \leq j \leq i-1 \\ i = p \end{array} \right\}
$$

Space of Iterations

Projections

Projections

$$
p = my_pid()
$$

if p >= 2 and p <= n then

$$
i = p
$$

for j = 1 to i - 1 do

Prof. Saman Amarasinghe, MIT. $\overline{55}$ 55 6.189 IAP 2007 MIT

Fourier Motzkin Elimination

- *1* ≤ *i* ≤ *n1* ≤ *j* [≤] *i-1* $i = p$
- ●Project $i \rightarrow j \rightarrow p$
- ● Find the bounds of i
	- *1* ≤ *i j+1*[≤] *i* $p \leq i$
		- *i* ≤ *n*
- *i* ≤ *p* i: max $(1, j+1, p)$ to min (n, p) i: p
- Eliminate i *1* ≤ *nj+1*[≤] *ⁿ p* ≤ *ⁿ 1* ≤ *p j+1*[≤] *p p* ≤ *p 1* ≤ *j* ● Eliminate redundant *p* ≤ *ⁿ 1* ≤ *p j+1*[≤] *p 1* ≤ *j*
- ●Continue onto finding bounds of j

Fourier Motzkin Elimination

- *p* ≤ *ⁿ*
- *1* ≤ *p*
- *j+1*[≤] *p*
- *1* ≤ *j*
- Find the bounds of j *1* ≤ *j j*[≤] *p -1*
- j: 1 to $p-1$
- Eliminate j *1* ≤ *p – 1 p* ≤ *ⁿ 1* ≤ *p*
- Eliminate redundant *2* ≤ *p p*≤ *ⁿ*
- Find the bounds of p *2* ≤ *p p*≤ *ⁿ* p: 2 to n

p = my_pid() if p >= 2 and p <= n then for j = 1 to p - 1 do i = p

Outline

- Parallel Execution
- **Parallelizing Compilers**
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- **Communication Code Generation**

Communication Code Generation

- Cache Coherent Shared Memory Machine
	- Generate code for the parallel loop nest
- No Cache Coherent Shared Memory or Distributed Memory Machines
	- Generate code for the parallel loop nest
	- Identify communication
	- Generate communication code

Identify Communication

● Location Centric

- Which locations written by processor 1 is used by processor 2?
- Multiple writes to the same location, which one is used?
- Data Dependence Analysis

● Value Centric

- Who did the last write on the location read?
	- –– Same processor \rightarrow just read the local copy
	- –- Different processor \rightarrow get the value from the writer
	- $\,$ No one \rightarrow Get the value from the original array $\,$

Last Write Trees (LWT)

• Input: Read access and Location Centric Dependences write access(es)

for i = 1 to n do for j = 1 to n do A[j] = … … = X[j-1] ^j

● Output: a function mapping each read iteration to a write creating that value

⊥

Communication Space

Prof. Saman Amarasinghe, MIT. 63 63 6.189 IAP 2007 MIT

Communication Loop Nests

Send Loop Nest

Merging Loop Nests

```
if p == 1 then
  X[p] =...
  for pr = p + 1 to n do
       send X[p] to iteration (pr, p) in processor pr
if p >= 2 and p <= n -
1 thenX[p] =...
  for pr = p + 1 to n do
       send X[p] to iteration (pr, p) in processor pr
  for j = 1 to p -
1 doreceive X[j] from iteration (j) in processor j
       ... = X[j]
if p == n then
  X[p] =...
  for j = 1 to p -
1 do
       receive X[j] from iteration (j) in processor j
       \cdot \cdot \cdot = X[i]
```
Communication Optimizations

- Eliminating redundant communication
- ●Communication aggregation
- Multi-cast identification
- Local memory management

Summary

- \bullet Automatic parallelization of loops with arrays
	- **Requires Data Dependence Analysis**
	- **Iteration space & data space abstraction**
	- An integer programming problem
- ●Many optimizations that'll increase parallelism
- \bullet Transforming loop nests and communication code generation
	- **Fourier-Motzkin Elimination provides a nice framework**