
MIT OpenCourseWare
http://ocw.mit.edu

6.189 Multicore Programming Primer, January (IAP) 2007

Please use the following citation format:

Saman Amarasinghe, 6.189 Multicore Programming Primer, January
(IAP) 2007. (Massachusetts Institute of Technology: MIT
OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY).
License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit:
http://ocw.mit.edu/terms

http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms

6.189 IAP 2007

Lecture 11

Parallelizing Compilers

Prof. Saman Amarasinghe, MIT. 1 6.189 IAP 2007 MIT

Outline

● Parallel Execution
● Parallelizing Compilers
● Dependence Analysis
● Increasing Parallelization Opportunities

● Generation of Parallel Loops
● Communication Code Generation

Prof. Saman Amarasinghe, MIT. 2 6.189 IAP 2007 MIT

Types of Parallelism

●	 Instruction Level Parallelism
(ILP) Æ Scheduling and Hardware

●	 Task Level Parallelism (TLP) Æ Mainly by hand

● Loop Level Parallelism (LLP) Æ Hand or Compiler Generated
or Data Parallelism

●	 Pipeline Parallelism Æ Hardware or Streaming

●	 Divide and Conquer Æ Recursive functions
Parallelism

Prof. Saman Amarasinghe, MIT. 3	 6.189 IAP 2007 MIT

Why Loops?

● 90% of the execution time in 10% of the code

� Mostly in loops

● If parallel, can get good performance
� Load balancing

● Relatively easy to analyze

Prof. Saman Amarasinghe, MIT. 4 6.189 IAP 2007 MIT

Programmer Defined Parallel Loop

●	 FORALL ● FORACROSS
� No “loop carried � Some “loop carried

dependences” dependences”
� Fully parallel

5 6.189 IAP 2007 MIT Prof. Saman Amarasinghe, MIT.

Parallel Execution

● Example
FORPAR I = 0 to N

A[I] = A[I] + 1

● Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC);

FOR P = 0 to NUMPROC-1

FOR I = P*Iters to MIN((P+1)*Iters, N)

A[I] = A[I] + 1

● SPMD (Single Program, Multiple Data) Code
If(myPid == 0) {

…
Iters = ceiling(N/NUMPROC);

}
Barrier();
FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)

A[I] = A[I] + 1

Barrier();

Prof. Saman Amarasinghe, MIT. 6 6.189 IAP 2007 MIT

Parallel Execution

● Example
FORPAR I = 0 to N

A[I] = A[I] + 1

● Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC);
FOR P = 0 to NUMPROC-1

FOR I = P*Iters to MIN((P+1)*Iters, N)
A[I] = A[I] + 1

● Code that fork a function
Iters = ceiling(N/NUMPROC);
ParallelExecute(func1);
…
void func1(integer myPid)
{

FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
A[I] = A[I] + 1

}

Prof. Saman Amarasinghe, MIT. 7 6.189 IAP 2007 MIT

Outline

● Parallel Execution
● Parallelizing Compilers
● Dependence Analysis
● Increasing Parallelization Opportunities

● Generation of Parallel Loops
● Communication Code Generation

Prof. Saman Amarasinghe, MIT. 8 6.189 IAP 2007 MIT

Parallelizing Compilers

● Finding FORALL Loops out of FOR loops

● Examples
FOR I = 0 to 5

A[I+1] = A[I] + 1

FOR I = 0 to 5

A[I] = A[I+6] + 1

For I = 0 to 5

A[2*I] = A[2*I + 1] + 1

Prof. Saman Amarasinghe, MIT. 9 6.189 IAP 2007 MIT

Iteration Space

●	 N deep loops Æ n-dimensional discrete
cartesian space
� Normalized loops: assume step size = 1

0
 1 2
 5
4
3
 6 7 J

FOR I = 0 to 6

FOR J = I to 7

I Æ

●	 Iterations are represented as
coordinates in iteration space
� i̅ = [i1, i2, i3,…, in]

0
1
2
3
4
5
6

Prof. Saman Amarasinghe, MIT. 10	 6.189 IAP 2007 MIT

Iteration Space

●	 N deep loops Æ n-dimensional discrete
cartesian space
� Normalized loops: assume step size = 1

0
 1 2
 5
4
3
 6 7 J

FOR I = 0 to 6

FOR J = I to 7

I Æ

●	 Iterations are represented as
coordinates in iteration space

●	 Sequential execution order of iterations
Î Lexicographic order

[0,0], [0,1], [0,2], …, [0,6], [0,7],

[1,1], [1,2], …, [1,6], [1,7],

[2,2], …, [2,6], [2,7],

………
[6,6], [6,7],

0
1
2
3
4
5
6

Prof. Saman Amarasinghe, MIT. 11	 6.189 IAP 2007 MIT

Iteration Space

●	 N deep loops Æ n-dimensional discrete
cartesian space
� Normalized loops: assume step size = 1

0
 1 2
 5
4
3
 6 7 J

FOR I = 0 to 6

FOR J = I to 7

I Æ

●	 Iterations are represented as
coordinates in iteration space

●	 Sequential execution order of iterations
Î Lexicographic order

0
1
2
3
4
5
6

● Iteration i̅ is lexicograpically less than j̅ , i̅ < j̅ iff
there exists c s.t. i1 = j1, i2 = j2,… ic-1 = jc-1 and ic < jc

Prof. Saman Amarasinghe, MIT. 12	 6.189 IAP 2007 MIT

Iteration Space

●	 N deep loops Æ n-dimensional discrete
cartesian space
� Normalized loops: assume step size = 1

0
 1 2
 5
4
3
 6 7 J

FOR I = 0 to 6

FOR J = I to 7

I Æ

●	 An affine loop nest

0
1
2
3
4
5
6

� Loop bounds are integer linear functions of
constants, loop constant variables and
outer loop indexes

� Array accesses are integer linear functions
of constants, loop constant variables and
loop indexes

Prof. Saman Amarasinghe, MIT. 13	 6.189 IAP 2007 MIT

Iteration Space

● N deep loops Æ n-dimensional discrete
cartesian space
� Normalized loops: assume step size = 1

FOR I = 0 to 6
FOR J = I to 7

● Affine loop nest Æ Iteration space as a
set of liner inequalities

0 ≤ I
I ≤ 6

I ≤ J
J ≤ 7

0 1 2 3 4 5 6 7 J
0
1
2
3
4
5
6

I Æ

Prof. Saman Amarasinghe, MIT. 14 6.189 IAP 2007 MIT

Data Space

● M dimensional arrays Æ m-dimensional discrete cartesian space
� a hypercube

Integer A(10)
0 1 2 3 4 5 6 7 8 9

Float B(5, 6) 0 1 2 3 4 5

0

1

2

3

4

Prof. Saman Amarasinghe, MIT. 15 6.189 IAP 2007 MIT

Dependences

●	 True dependence
a 	 =

= a

●	 Anti dependence
= a

a =

●	 Output dependence
a =

a =

●	 Definition:
Data dependence exists for a dynamic instance i and j iff
� either i or j is a write operation
� i and j refer to the same variable
� i executes before j

●	 How about array accesses within loops?

Prof. Saman Amarasinghe, MIT. 16	 6.189 IAP 2007 MIT

Outline

● Parallel Execution
● Parallelizing Compilers
● Dependence Analysis
● Increasing Parallelization Opportunities

● Generation of Parallel Loops
● Communication Code Generation

Prof. Saman Amarasinghe, MIT. 17 6.189 IAP 2007 MIT

Array Accesses in a loop

FOR I = 0 to 5
A[I] = A[I] + 1

0 1 2 3 4 5
Iteration Space

0 1 2 3 4 5 6 7 8
Data Space

9 10 11 12

Prof. Saman Amarasinghe, MIT. 18 6.189 IAP 2007 MIT

19

Array Accesses in a loop

FOR I = 0 to 5
A[I] = A[I] + 1

Iteration Space Data Space

6.189 IAP 2007 MIT Prof. Saman Amarasinghe, MIT.

0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5

= A[I]
A[I]

= A[I]
A[I]

= A[I]
A[I]

= A[I]
A[I]

= A[I]
A[I]

= A[I]
A[I]

20

Array Accesses in a loop

FOR I = 0 to 5
A[I+1] = A[I] + 1

Iteration Space Data Space

6.189 IAP 2007 MIT Prof. Saman Amarasinghe, MIT.

0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5

= A[I]
A[I+1]

= A[I]
A[I+1]

= A[I]
A[I+1]

= A[I]
A[I+1]

= A[I]
A[I+1]

= A[I]
A[I+1]

21

Array Accesses in a loop

FOR I = 0 to 5
A[I] = A[I+2] + 1

Iteration Space Data Space

6.189 IAP 2007 MIT Prof. Saman Amarasinghe, MIT.

0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5

= A[I+2]
A[I]

= A[I+2]
A[I]

= A[I+2]
A[I]

= A[I+2]
A[I]

= A[I+2]
A[I]

= A[I+2]
A[I]

22

Array Accesses in a loop

FOR I = 0 to 5
A[2*I] = A[2*I+1] + 1

Iteration Space Data Space

6.189 IAP 2007 MIT Prof. Saman Amarasinghe, MIT.

0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5

= A[2*+1]
A[2*I]

= A[2*I+1]
A[2*I]

= A[2*I+1]
A[2*I]

= A[2*I+1]
A[2*I]

= A[2*I+1]
A[2*I]

= A[2*I+1]
A[2*I]

Recognizing FORALL Loops

●	 Find data dependences in loop
� For every pair of array acceses to the same array

If the first access has at least one dynamic instance (an iteration) in
which it refers to a location in the array that the second access also
refers to in at least one of the later dynamic instances (iterations).
Then there is a data dependence between the statements

� (Note that same array can refer to itself – output dependences)

●	 Definition
� Loop-carried dependence:

dependence that crosses a loop boundary

●	 If there are no loop carried dependences Æ parallelizable

Prof. Saman Amarasinghe, MIT. 23	 6.189 IAP 2007 MIT

Data Dependence Analysis

● Example
FOR I = 0 to 5

A[I+1] = A[I] + 1

●	 Is there a loop-carried dependence between A[I+1] and A[I]
� Is there two distinct iterations iw and ir such that A[iw+1] is the same location

as A[ir]
� ∃ integers iw, ir 0 ≤ iw, ir ≤ 5 iw ≠ ir iw+ 1 = ir

●	 Is there a dependence between A[I+1] and A[I+1]
� Is there two distinct iterations i1 and i2 such that A[i1+1] is the same location

as A[i2+1]
� ∃ integers i1, i2 0 ≤ i1, i2 ≤ 5 i1 ≠ i2 i1+ 1 = i2 +1

Prof. Saman Amarasinghe, MIT. 24	 6.189 IAP 2007 MIT

Integer Programming

●	 Formulation
� ∃ an integer vector i̅ such that Â i̅ ≤ b̅ where

Â is an integer matrix and b̅ is an integer vector

●	 Our problem formulation for A[i] and A[i+1]
� ∃ integers iw, ir 0 ≤ iw, ir ≤ 5 iw ≠ ir iw+ 1 = ir
� iw ≠ ir is not an affine function

– divide into 2 problems
– Problem 1 with iw < ir and problem 2 with ir < iw
– If either problem has a solution Æ there exists a dependence

� How about iw+ 1 = ir
–	 Add two inequalities to single problem

iw+ 1 ≤ ir, and ir ≤ iw+ 1

Prof. Saman Amarasinghe, MIT. 25	 6.189 IAP 2007 MIT

Integer Programming Formulation

● Problem 1

0 ≤ iw

iw ≤ 5

0 ≤ ir

iw < ir

iw+ 1 ≤ ir

ir ≤ 5

ir ≤ iw+ 1

Prof. Saman Amarasinghe, MIT. 26 6.189 IAP 2007 MIT

Integer Programming Formulation

● Problem 1

0 ≤ iw Æ -iw ≤ 0

iw ≤ 5 Æ iw ≤ 5

0 ≤ ir Æ -ir ≤ 0

iw < ir Æ iw - ir ≤ -1

iw+ 1 ≤ ir Æ iw - ir ≤ -1

ir ≤ 5 Æ ir ≤ 5

ir ≤ iw+ 1 Æ -iw + ir ≤ 1

Prof. Saman Amarasinghe, MIT. 27 6.189 IAP 2007 MIT

Integer Programming Formulation

● Problem 1 Â b̅

0 ≤ iw Æ -iw ≤ 0 -1 0 0
iw ≤ 5 Æ iw ≤ 5 1 0 5
0 ≤ ir Æ -ir ≤ 0 0 -1 0
ir ≤ 5 Æ ir ≤ 5 0 1 5
iw < ir Æ iw - ir ≤ -1 1 -1 -1
iw+ 1 ≤ ir Æ iw - ir ≤ -1 1 -1 -1
ir ≤ iw+ 1 Æ -iw + ir ≤ 1 -1 1 1

● and problem 2 with ir < iw

Prof. Saman Amarasinghe, MIT. 28 6.189 IAP 2007 MIT

Generalization

● An affine loop nest
FOR i1 = fl1(c1…ck) to Iu1(c1…ck)
FOR i2 = fl2(i1,c1…ck) to Iu2(i1,c1…ck)

……
FOR in = fln(i1…in-1,c1…ck) to Iun(i1…in-1,c1…ck)

A[fa1(i1…in,c1…ck), fa2(i1…in,c1…ck),…,fam(i1…in,c1…ck)]

● Solve 2*n problems of the form
– i1 = j1, i2 = j2,…… in-1 = jn-1, in < jn
– i1 = j1, i2 = j2,…… in-1 = jn-1, jn < in
– i1 = j1, i2 = j2,…… in-1 < jn-1
– i1 = j1, i2 = j2,…… jn-1 < in-1

…………………
– i1 = j1, i2 < j2
– i1 = j1, j2 < i2
– i1 < j1
– j1 < i1

Prof. Saman Amarasinghe, MIT. 29 6.189 IAP 2007 MIT

Multi-Dimensional Dependence

FOR I = 1 to n

FOR J = 1 to n
A[I, J] = A[I, J-1] + 1

J

I

Prof. Saman Amarasinghe, MIT. 30 6.189 IAP 2007 MIT

Multi-Dimensional Dependence

FOR I = 1 to n

FOR J = 1 to n

A[I, J] = A[I, J-1] + 1

J

I

FOR I = 1 to n JFOR J = 1 to n

A[I, J] = A[I+1, J] + 1

I

Prof. Saman Amarasinghe, MIT. 31 6.189 IAP 2007 MIT

What is the Dependence?

FOR I = 1 to n J
FOR J = 1 to n
A[I, J] = A[I-1, J+1] + 1

I

FOR I = 1 to n JFOR J = 1 to n
B[I] = B[I-1] + 1

I

Prof. Saman Amarasinghe, MIT. 32 6.189 IAP 2007 MIT

What is the Dependence?

FOR I = 1 to n J
FOR J = 1 to n
A[I, J] = A[I-1, J+1] + 1

I

FOR I = 1 to n JFOR J = 1 to n
A[I] = A[I-1] + 1

I

Prof. Saman Amarasinghe, MIT. 33 6.189 IAP 2007 MIT

What is the Dependence?

FOR I = 1 to n J
FOR J = 1 to n
A[I, J] = A[I-1, J+1] + 1

I

FOR I = 1 to n JFOR J = 1 to n
B[I] = B[I-1] + 1

I

Prof. Saman Amarasinghe, MIT. 34 6.189 IAP 2007 MIT

Outline

● Parallel Execution
● Parallelizing Compilers
● Dependence Analysis
● Increasing Parallelization Opportunities

● Generation of Parallel Loops
● Communication Code Generation

Prof. Saman Amarasinghe, MIT. 35 6.189 IAP 2007 MIT

Increasing Parallelization Opportunities

● Scalar Privatization
● Reduction Recognition
● Induction Variable Identification

● Array Privatization
● Interprocedural Parallelization
● Loop Transformations
● Granularity of Parallelism

Prof. Saman Amarasinghe, MIT. 36 6.189 IAP 2007 MIT

Scalar Privatization

● Example
FOR i = 1 to n

X = A[i] * 3;
B[i] = X;

● Is there a loop carried dependence?

● What is the type of dependence?

Prof. Saman Amarasinghe, MIT. 37 6.189 IAP 2007 MIT

Privatization

● Analysis:
� Any anti- and output- loop-carried dependences

● Eliminate by assigning in local context
FOR i = 1 to n

integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;

● Eliminate by expanding into an array
FOR i = 1 to n

Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];

Prof. Saman Amarasinghe, MIT. 38 6.189 IAP 2007 MIT

Privatization

●	 Need a final assignment to maintain the correct value after the
loop nest

● Eliminate by assigning in local context
FOR i = 1 to n

integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;
if(i == n) X = Xtmp

● Eliminate by expanding into an array
FOR i = 1 to n

Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];

X = Xtmp[n];

Prof. Saman Amarasinghe, MIT. 39	 6.189 IAP 2007 MIT

Another Example

● How about loop-carried true dependences?

● Example
FOR i = 1 to n

X = X + A[i];

● Is this loop parallelizable?

Prof. Saman Amarasinghe, MIT. 40 6.189 IAP 2007 MIT

Reduction Recognition

● Reduction Analysis:
� Only associative operations
� The result is never used within the loop

● Transformation
Integer Xtmp[NUMPROC];

Barrier();

FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)

Xtmp[myPid] = Xtmp[myPid] + A[i];

Barrier();

If(myPid == 0) {

FOR p = 0 to NUMPROC-1

X = X + Xtmp[p];

…

Prof. Saman Amarasinghe, MIT. 41 6.189 IAP 2007 MIT

Induction Variables

● Example
FOR i = 0 to N

A[i] = 2^i;
● After strength reduction

t = 1
FOR i = 0 to N

A[i] = t;

t = t*2;

● What happened to loop carried dependences?

● Need to do opposite of this!
� Perform induction variable analysis
� Rewrite IVs as a function of the loop variable

Prof. Saman Amarasinghe, MIT. 42 6.189 IAP 2007 MIT

Array Privatization

●	 Similar to scalar privatization

●	 However, analysis is more complex
� Array Data Dependence Analysis:

Checks if two iterations access the same location

� Array Data Flow Analysis:

Checks if two iterations access the same value

●	 Transformations
� Similar to scalar privatization
� Private copy for each processor or expand with an additional

dimension

Prof. Saman Amarasinghe, MIT. 43	 6.189 IAP 2007 MIT

Interprocedural Parallelization

● Function calls will make a loop unparallelizatble
� Reduction of available parallelism
� A lot of inner-loop parallelism

● Solutions
� Interprocedural Analysis
� Inlining

Prof. Saman Amarasinghe, MIT. 44 6.189 IAP 2007 MIT

Interprocedural Parallelization

● Issues
� Same function reused many times
� Analyze a function on each trace Æ Possibly exponential
� Analyze a function once Æ unrealizable path problem

● Interprocedural Analysis
� Need to update all the analysis
� Complex analysis
� Can be expensive

● Inlining
� Works with existing analysis
� Large code bloat Æ can be very expensive

Prof. Saman Amarasinghe, MIT. 45 6.189 IAP 2007 MIT

Loop Transformations

J

I

● A loop may not be parallel as is
● Example

FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j-1] + A[i-1,j];

Prof. Saman Amarasinghe, MIT. 46 6.189 IAP 2007 MIT

Loop Transformations

● A loop may not be parallel as is
● Example

FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j-1] + A[i-1,j];

J

I

J

● After loop Skewing
FOR i = 1 to 2*N-3

FORPAR j = max(1,i-N+2) to min(i, N-1)
A[i-j+1,j] = A[i-j+1,j-1] + A[i-j,j];

Prof. Saman Amarasinghe, MIT. 47 6.189 IAP 2007 MIT

I

Granularity of Parallelism

● Example
FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];

● Gets transformed into
FOR i = 1 to N-1

Barrier();
FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)

A[i,j] = A[i,j] + A[i-1,j];
Barrier();

● Inner loop parallelism can be expensive
� Startup and teardown overhead of parallel regions
� Lot of synchronization
� Can even lead to slowdowns

J

I

Prof. Saman Amarasinghe, MIT. 48 6.189 IAP 2007 MIT

Granularity of Parallelism

● Inner loop parallelism can be expensive

● Solutions
� Don’t parallelize if the amount of work within the loop is

too small

or

� Transform into outer-loop parallelism

Prof. Saman Amarasinghe, MIT. 49 6.189 IAP 2007 MIT

Outer Loop Parallelism

I

J

● Example J
FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];

I

● After Loop Transpose
FOR j = 1 to N-1

FOR i = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];

● Get mapped into
Barrier();

FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)

FOR i = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];

Barrier();

Prof. Saman Amarasinghe, MIT. 50 6.189 IAP 2007 MIT

Outline

● Parallel Execution
● Parallelizing Compilers
● Dependence Analysis
● Increasing Parallelization Opportunities

● Generation of Parallel Loops
● Communication Code Generation

Prof. Saman Amarasinghe, MIT. 51 6.189 IAP 2007 MIT

Generating Transformed Loop Bounds

for i = 1 to n do i
X[i] =...

for j = 1 to i - 1 do

... = X[j]

●	 Assume we want to parallelize

the i loop

j

●	 What are the loop bounds?

1 ≤ i ≤ n
●	 Use Projections of the (p, i, j) 1 ≤ j ≤ i-1

i = pIteration Space
� Fourier-Motzkin Elimination

Algorithm

Prof. Saman Amarasinghe, MIT. 52	 6.189 IAP 2007 MIT

Space of Iterations

(p, i, j)
1 ≤ i ≤ n

1 ≤ j ≤ i-1
i = p

p

i
j

for p = 2 to n do
i = p
for j = 1 to i - 1 do

Prof. Saman Amarasinghe, MIT. 53 6.189 IAP 2007 MIT

Projections

i = p

for p = 2 to n do

for j = 1 to i - 1 do

p

i
j

Prof. Saman Amarasinghe, MIT. 54 6.189 IAP 2007 MIT

Projections

for p = 2 to n do

i = p

for j = 1 to i - 1 do

p = my_pid()
if p >= 2 and p <= n then

i = p
for j = 1 to i - 1 do

Prof. Saman Amarasinghe, MIT. 55 6.189 IAP 2007 MIT

Fourier Motzkin Elimination

1 ≤ i ≤ n

1 ≤ j ≤ i-1

i = p

● Project i Æ j Æ p

● Find the bounds of i
1 ≤ i

j+1≤ i
p ≤ i

i ≤ n
i ≤ p

i: max(1, j+1, p) to min(n, p)

i: p

● Eliminate i
1 ≤ n

j+1≤ n

p ≤ n

1 ≤ p

j+1≤ p

p ≤ p

1 ≤ j

● Eliminate redundant

p ≤ n

1 ≤ p

j+1≤ p

1 ≤ j

● Continue onto finding bounds of j

Prof. Saman Amarasinghe, MIT. 56 6.189 IAP 2007 MIT

Fourier Motzkin Elimination

p ≤ n

1 ≤ p

j+1≤ p

1 ≤ j

● Find the bounds of j

1 ≤ j

j≤ p -1

j: 1 to p – 1

● Eliminate j
1 ≤ p – 1

p ≤ n

1 ≤ p

● Eliminate redundant
2 ≤ p
p≤ n

● Find the bounds of p
2 ≤ p

p≤ n
p: 2 to n

p = my_pid()
if p >= 2 and p <= n then

for j = 1 to p - 1 do
i = p

Prof. Saman Amarasinghe, MIT. 57 6.189 IAP 2007 MIT

Outline

● Parallel Execution
● Parallelizing Compilers
● Dependence Analysis
● Increasing Parallelization Opportunities

● Generation of Parallel Loops
● Communication Code Generation

Prof. Saman Amarasinghe, MIT. 58 6.189 IAP 2007 MIT

Communication Code Generation

● Cache Coherent Shared Memory Machine

� Generate code for the parallel loop nest

● No Cache Coherent Shared Memory

or Distributed Memory Machines

� Generate code for the parallel loop nest
� Identify communication
� Generate communication code

Prof. Saman Amarasinghe, MIT. 59 6.189 IAP 2007 MIT

Identify Communication

●	 Location Centric
� Which locations written by processor 1 is used by

processor 2?

� Multiple writes to the same location, which one is used?
� Data Dependence Analysis

●	 Value Centric
� Who did the last write on the location read?

–	 Same processor Æ just read the local copy
–	 Different processor Æ get the value from the writer
–	 No one Æ Get the value from the original array

Prof. Saman Amarasinghe, MIT. 60	 6.189 IAP 2007 MIT

Last Write Trees (LWT)

● Input: Read access and Location Centric DependencesValue Centric Dependences

write access(es)

for i = 1 to n do
for j = 1 to n do

A[j] = …

… = X[j-1]
 j

i

● Output: a function mapping
each read iteration to a write
creating that value

⊥

iw ir =

jw jr 1–=

T

F

1 j r<

Prof. Saman Amarasinghe, MIT. 61 6.189 IAP 2007 MIT

The Combined Space

precv

irecv

jrecv

psend

isend

the receive iterations……… 1 ≤ irecv ≤ n
0 ≤ jrecv ≤ irecv -1

the last-write relation…………… isend = irecv

computation decomposition for:
receive iterations…………. Precv = irecv

send iterations…………….. Psend = isend

Non-local communication……... Precv ≠ Psend

Prof. Saman Amarasinghe, MIT. 62 6.189 IAP 2007 MIT

Communication Space

for i = 1 to n do

for j = 1 to n do

A[j] = … psend

… = X[j-1]

1 ≤ irecv ≤ n precv
0 ≤ jrecv ≤ irecv -1

isend = irecv jrecvPrecv = irecv

Psend = isend

Precv ≠ Psend

isend

irecv

Prof. Saman Amarasinghe, MIT. 63 6.189 IAP 2007 MIT

Communication Loop Nests

psend

isend

precv
irecv

jrecv

Send Loop Nest

for psend = 1 to n - 1 do

isend = psend
for precv = isend + 1 to n do

irecv = precv
jrecv = isend
send X[isend] to

iteration (irecv, jrecv) in
processor precv

Prof. Saman Amarasinghe, MIT. 64

psend

isend

precv
irecv

jrecv

Receive Loop Nest

for precv = 2 to n do

irecv = precv
for jrecv = 1 to irecv - 1 do

psend = jrecv
isend = psend
receive X[jrecv] from

iteration isend in
processor psend

6.189 IAP 2007 MIT

Merging Loops

Computation Send Recv

It
e r

at
io

n s

Prof. Saman Amarasinghe, MIT. 65 6.189 IAP 2007 MIT

Merging Loop Nests

if p == 1 then
X[p] =...
for pr = p + 1 to n do

send X[p] to iteration (pr, p) in processor pr
if p >= 2 and p <= n - 1 then

X[p] =...
for pr = p + 1 to n do

send X[p] to iteration (pr, p) in processor pr
for j = 1 to p - 1 do

receive X[j] from iteration (j) in processor j
... = X[j]

if p == n then
X[p] =...
for j = 1 to p - 1 do

receive X[j] from iteration (j) in processor j
... = X[j]

Prof. Saman Amarasinghe, MIT. 66 6.189 IAP 2007 MIT

Communication Optimizations

● Eliminating redundant communication

● Communication aggregation
● Multi-cast identification
● Local memory management

Prof. Saman Amarasinghe, MIT. 67 6.189 IAP 2007 MIT

Summary

● Automatic parallelization of loops with arrays
� Requires Data Dependence Analysis
� Iteration space & data space abstraction
� An integer programming problem

● Many optimizations that’ll increase parallelism

● Transforming loop nests and communication code generation

� Fourier-Motzkin Elimination provides a nice framework

Prof. Saman Amarasinghe, MIT. 68 6.189 IAP 2007 MIT

