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6.189 IAP 2007


Lecture 11


Parallelizing Compilers
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Outline


● Parallel Execution 
● Parallelizing Compilers 
● Dependence Analysis 
● Increasing Parallelization Opportunities


● Generation of Parallel Loops 
● Communication Code Generation 
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Types of Parallelism


●	 Instruction Level Parallelism 
(ILP) Æ Scheduling and Hardware 

●	 Task Level Parallelism (TLP) Æ Mainly by hand 

● Loop Level Parallelism (LLP) Æ Hand or Compiler Generated
or Data Parallelism 

●	 Pipeline Parallelism Æ Hardware or Streaming 

●	 Divide and Conquer Æ Recursive functions 
Parallelism 
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Why Loops?


● 90% of the execution time in 10% of the code

� Mostly in loops 

● If parallel, can get good performance 
� Load balancing 

● Relatively easy to analyze 
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Programmer Defined Parallel Loop


●	 FORALL ● FORACROSS 
� No “loop carried � Some “loop carried 

dependences” dependences” 
� Fully parallel 
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Parallel Execution


● Example
FORPAR I = 0 to N


A[I] = A[I] + 1


● Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC);

FOR P = 0 to NUMPROC-1


FOR I = P*Iters to MIN((P+1)*Iters, N)

A[I] = A[I] + 1


● SPMD (Single Program, Multiple Data) Code
If(myPid == 0) { 

… 
Iters = ceiling(N/NUMPROC); 

}
Barrier();
FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)

A[I] = A[I] + 1

Barrier(); 
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Parallel Execution


● Example
FORPAR I = 0 to N 

A[I] = A[I] + 1 

● Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC);
FOR P = 0 to NUMPROC-1 

FOR I = P*Iters to MIN((P+1)*Iters, N)
A[I] = A[I] + 1 

● Code that fork a function 
Iters = ceiling(N/NUMPROC);
ParallelExecute(func1); 
… 
void func1(integer myPid)
{ 

FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
A[I] = A[I] + 1

} 
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Outline


● Parallel Execution 
● Parallelizing Compilers 
● Dependence Analysis 
● Increasing Parallelization Opportunities


● Generation of Parallel Loops 
● Communication Code Generation 
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Parallelizing Compilers


● Finding FORALL Loops out of FOR loops


● Examples 
FOR I = 0 to 5


A[I+1] = A[I] + 1


FOR I = 0 to 5


A[I] = A[I+6] + 1


For I = 0 to 5


A[2*I] = A[2*I + 1] + 1
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Iteration Space


●	 N deep loops Æ n-dimensional discrete 
cartesian space 
� Normalized loops: assume step size = 1


0
 1 2
 5
4
3
 6 7  J

FOR I = 0 to 6


FOR J = I to 7


I Æ

●	 Iterations are represented as
coordinates in iteration space 
� i̅ = [i1, i2, i3,…, in] 

0
1
2
3
4
5
6
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Iteration Space


●	 N deep loops Æ n-dimensional discrete 
cartesian space 
� Normalized loops: assume step size = 1 

0
 1 2
 5
4
3
 6 7  J

FOR I = 0 to 6 

FOR J = I to 7 

I Æ

●	 Iterations are represented as
coordinates in iteration space 

●	 Sequential execution order of iterations 
Î Lexicographic order

[0,0], [0,1], [0,2], …, [0,6],  [0,7],


[1,1], [1,2], …, [1,6], [1,7],

[2,2], …, [2,6], [2,7],


……… 
[6,6], [6,7], 

0
1
2
3
4
5
6
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Iteration Space


●	 N deep loops Æ n-dimensional discrete 
cartesian space 
� Normalized loops: assume step size = 1


0
 1 2
 5
4
3
 6 7  J

FOR I = 0 to 6


FOR J = I to 7


I Æ

●	 Iterations are represented as
coordinates in iteration space 

●	 Sequential execution order of iterations 
Î Lexicographic order 

0
1
2
3
4
5
6


● Iteration i̅ is lexicograpically less than j̅ , i̅ < j̅ iff 
there exists c s.t. i1 = j1, i2 = j2,… ic-1 = jc-1 and ic < jc 
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Iteration Space


●	 N deep loops Æ n-dimensional discrete 
cartesian space 
� Normalized loops: assume step size = 1 

0
 1 2
 5
4
3
 6 7  J

FOR I = 0 to 6 

FOR J = I to 7 

I Æ

●	 An affine loop nest 

0
1
2
3
4
5
6


� Loop bounds are integer linear functions of 
constants, loop constant variables and 
outer loop indexes 

� Array accesses are integer linear functions 
of constants, loop constant variables and 
loop indexes 
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Iteration Space


● N deep loops Æ n-dimensional discrete 
cartesian space 
� Normalized loops: assume step size = 1 

FOR I = 0 to 6 
FOR J = I to 7 

● Affine loop nest Æ Iteration space as a 
set of liner inequalities 

0 ≤ I 
I ≤ 6 

I ≤ J 
J ≤ 7 

0 1 2 3 4 5 6 7  J 
0 
1 
2 
3 
4 
5 
6 

I Æ
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Data Space


● M dimensional arrays Æ m-dimensional discrete cartesian space 
� a hypercube 

Integer A(10) 
0 1 2  3 4 5  6 7 8 9 


Float B(5, 6) 0 1 2  3 4 5 

0

1

2

3

4
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Dependences 


●	 True dependence 
a 	 =


= a


●	 Anti dependence 
= a


a = 


●	 Output dependence 
a =

a =


●	 Definition: 
Data dependence exists for a dynamic instance i and j iff 
� either i or j is a write operation 
� i and j refer to the same variable 
� i executes before j 

●	 How about array accesses within loops? 
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Outline


● Parallel Execution 
● Parallelizing Compilers 
● Dependence Analysis 
● Increasing Parallelization Opportunities


● Generation of Parallel Loops 
● Communication Code Generation 
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Array Accesses in a loop


FOR I = 0 to 5 
A[I] = A[I] + 1 

0 1  2  3  4  5  
Iteration Space 

0 1 2 3 4 5 6 7 8 
Data Space 

9 10 11 12  
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19

Array Accesses in a loop


FOR I = 0 to 5 
A[I] = A[I] + 1 

Iteration Space Data Space 
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0 1 2 3 4 5 6 7 8 9 10 11 12  0 1  2  3  4  5  

= A[I] 
A[I] 

= A[I] 
A[I] 

= A[I] 
A[I] 

= A[I] 
A[I] 

= A[I] 
A[I] 

= A[I] 
A[I] 
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Array Accesses in a loop


FOR I = 0 to 5 
A[I+1] = A[I] + 1 

Iteration Space Data Space 
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0 1 2 3 4 5 6 7 8 9 10 11 12  0 1  2  3  4  5  

= A[I] 
A[I+1] 

= A[I] 
A[I+1] 

= A[I] 
A[I+1] 

= A[I] 
A[I+1] 

= A[I] 
A[I+1] 

= A[I] 
A[I+1] 
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Array Accesses in a loop


FOR I = 0 to 5 
A[I] = A[I+2] + 1 

Iteration Space Data Space 
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0 1 2 3 4 5 6 7 8 9 10 11 12  0 1  2  3  4  5  

= A[I+2] 
A[I] 

= A[I+2] 
A[I] 

= A[I+2] 
A[I] 

= A[I+2] 
A[I] 

= A[I+2] 
A[I] 

= A[I+2] 
A[I] 
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Array Accesses in a loop


FOR I = 0 to 5 
A[2*I] = A[2*I+1] + 1 

Iteration Space Data Space 
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0 1 2 3 4 5 6 7 8 9 10 11 12  0 1  2  3  4  5  

= A[2*+1] 
A[2*I] 

= A[2*I+1] 
A[2*I] 

= A[2*I+1] 
A[2*I] 

= A[2*I+1] 
A[2*I] 

= A[2*I+1] 
A[2*I] 

= A[2*I+1] 
A[2*I] 



Recognizing FORALL Loops


●	 Find data dependences in loop 
� For every pair of array acceses to the same array 

If the first access has at least one dynamic instance (an iteration) in 
which it refers to a location in the array that the second access also 
refers to in at least one of the later dynamic instances (iterations). 
Then there is a data dependence between the statements 

� (Note that same array can refer to itself – output dependences) 

●	 Definition 
� Loop-carried dependence:


dependence that crosses a loop boundary


●	 If there are no loop carried dependences Æ parallelizable 
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Data Dependence Analysis 


● Example 
FOR I = 0 to 5 

A[I+1] = A[I] + 1 

●	 Is there a loop-carried dependence between A[I+1] and A[I] 
� Is there two distinct iterations iw and ir such that A[iw+1] is the same location

as A[ir] 
� ∃ integers iw, ir 0 ≤ iw, ir ≤ 5 iw ≠ ir iw+ 1 = ir 

●	 Is there a dependence between A[I+1] and A[I+1] 
� Is there two distinct iterations i1 and i2 such that A[i1+1] is the same location

as A[i2+1] 
� ∃ integers i1, i2 0 ≤ i1, i2 ≤ 5 i1 ≠ i2 i1+ 1 = i2 +1 
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Integer Programming


●	 Formulation 
�  ∃ an integer vector i̅ such that Â i̅ ≤ b̅ where 

Â is an integer matrix and b̅ is an integer vector 

●	 Our problem formulation for A[i] and A[i+1] 
� ∃ integers iw, ir 0 ≤ iw, ir ≤ 5 iw ≠ ir iw+ 1 = ir 
� iw ≠ ir is not an affine function 

– divide into 2 problems 
– Problem 1 with iw < ir and problem 2 with ir < iw 
– If either problem has a solution Æ there exists a dependence 

� How about iw+ 1 = ir 
–	 Add two inequalities to single problem


iw+ 1 ≤ ir, and ir ≤ iw+ 1
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Integer Programming Formulation


● Problem 1

0 ≤ iw


iw ≤ 5


0 ≤ ir


iw < ir

iw+ 1 ≤ ir


ir ≤ 5


ir ≤ iw+ 1
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Integer Programming Formulation


● Problem 1

0 ≤ iw Æ -iw ≤ 0


iw ≤ 5 Æ iw ≤ 5


0 ≤ ir Æ -ir ≤ 0


iw < ir Æ iw - ir ≤ -1


iw+ 1 ≤ ir Æ iw - ir ≤ -1


ir ≤ 5 Æ ir ≤ 5


ir ≤ iw+ 1 Æ -iw + ir ≤ 1
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Integer Programming Formulation


● Problem 1 Â b̅

0 ≤ iw Æ -iw ≤ 0  -1  0  0  
iw ≤ 5 Æ iw ≤ 5 1 0 5 
0 ≤ ir Æ -ir ≤ 0  0 -1  0  
ir ≤ 5 Æ ir ≤ 5 0 1 5 
iw < ir Æ iw - ir ≤ -1 1 -1 -1 
iw+ 1 ≤ ir Æ iw - ir ≤ -1 1 -1 -1 
ir ≤ iw+ 1 Æ -iw + ir ≤ 1  -1  1  1  

● and problem 2 with ir < iw 
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Generalization


● An affine loop nest
FOR i1 = fl1(c1…ck) to Iu1(c1…ck)
FOR i2 = fl2(i1,c1…ck) to Iu2(i1,c1…ck) 

…… 
FOR in = fln(i1…in-1,c1…ck) to Iun(i1…in-1,c1…ck)

A[fa1(i1…in,c1…ck), fa2(i1…in,c1…ck),…,fam(i1…in,c1…ck)] 

● Solve 2*n problems of the form 
– i1 = j1, i2 = j2,…… in-1 = jn-1, in < jn 
– i1 = j1, i2 = j2,…… in-1 = jn-1, jn < in 
– i1 = j1, i2 = j2,…… in-1 < jn-1 
– i1 = j1, i2 = j2,…… jn-1 < in-1 

………………… 
– i1 = j1, i2 < j2 
– i1 = j1, j2 < i2 
– i1 < j1 
– j1 < i1 
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Multi-Dimensional Dependence


FOR I = 1 to n


FOR J = 1 to n 
A[I, J] = A[I, J-1] + 1 

J 

I 
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Multi-Dimensional Dependence


FOR I = 1 to n


FOR J = 1 to n


A[I, J] = A[I, J-1] + 1


J 

I 

FOR I = 1 to n JFOR J = 1 to n


A[I, J] = A[I+1, J] + 1


I
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What is the Dependence?


FOR I = 1 to n J 
FOR J = 1 to n 
A[I, J] = A[I-1, J+1] + 1 

I 

FOR I = 1 to n JFOR J = 1 to n 
B[I] = B[I-1] + 1 

I 
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What is the Dependence?


FOR I = 1 to n J 
FOR J = 1 to n 
A[I, J] = A[I-1, J+1] + 1 

I 

FOR I = 1 to n JFOR J = 1 to n 
A[I] = A[I-1] + 1 

I 
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What is the Dependence?


FOR I = 1 to n J 
FOR J = 1 to n 
A[I, J] = A[I-1, J+1] + 1 

I 

FOR I = 1 to n JFOR J = 1 to n 
B[I] = B[I-1] + 1 

I 
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Outline


● Parallel Execution 
● Parallelizing Compilers 
● Dependence Analysis 
● Increasing Parallelization Opportunities


● Generation of Parallel Loops 
● Communication Code Generation 
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Increasing Parallelization Opportunities


● Scalar Privatization 
● Reduction Recognition 
● Induction Variable Identification


● Array Privatization 
● Interprocedural Parallelization 
● Loop Transformations 
● Granularity of Parallelism 
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Scalar Privatization


● Example 
FOR i = 1 to n 

X = A[i] * 3;
B[i] = X; 

● Is there a loop carried dependence?


● What is the type of dependence? 
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Privatization 


● Analysis: 
� Any anti- and output- loop-carried dependences 

● Eliminate by assigning in local context
FOR i = 1 to n 

integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp; 

● Eliminate by expanding into an array
FOR i = 1 to n 

Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i]; 
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Privatization 


●	 Need a final assignment to maintain the correct value after the
loop nest 

● Eliminate by assigning in local context
FOR i = 1 to n 

integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;
if(i == n) X = Xtmp 

● Eliminate by expanding into an array
FOR i = 1 to n 

Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];

X = Xtmp[n]; 
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Another Example


● How about loop-carried true dependences?


● Example 
FOR i = 1 to n 

X = X + A[i]; 

● Is this loop parallelizable? 
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Reduction Recognition


● Reduction Analysis: 
� Only associative operations 
� The result is never used within the loop 

● Transformation 
Integer Xtmp[NUMPROC];

Barrier();

FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)


Xtmp[myPid] = Xtmp[myPid] + A[i];

Barrier();

If(myPid == 0) {


FOR p = 0 to NUMPROC-1

X = X + Xtmp[p];


… 
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Induction Variables


● Example 
FOR i = 0 to N 

A[i] = 2^i; 
● After strength reduction 

t = 1 
FOR i = 0 to N


A[i] = t;


t = t*2;


● What happened to loop carried dependences?


● Need to do opposite of this! 
� Perform induction variable analysis 
� Rewrite IVs as a function of the loop variable 
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Array Privatization


●	 Similar to scalar privatization 

●	 However, analysis is more complex 
� Array Data Dependence Analysis:


Checks if two iterations access the same location


� Array Data Flow Analysis:

Checks if two iterations access the same value


●	 Transformations 
� Similar to scalar privatization 
� Private copy for each processor or expand with an additional 

dimension 
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Interprocedural Parallelization


● Function calls will make a loop unparallelizatble 
� Reduction of available parallelism 
� A lot of inner-loop parallelism 

● Solutions 
� Interprocedural Analysis 
� Inlining 
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Interprocedural Parallelization


● Issues 
� Same function reused many times 
� Analyze a function on each trace Æ Possibly exponential 
� Analyze a function once Æ unrealizable path problem 

● Interprocedural Analysis 
� Need to update all the analysis 
� Complex analysis 
� Can be expensive 

● Inlining 
� Works with existing analysis 
� Large code bloat Æ can be very expensive 
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Loop Transformations

J 

I 

● A loop may not be parallel as is 
● Example

FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j-1] + A[i-1,j];
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Loop Transformations


● A loop may not be parallel as is 
● Example

FOR i = 1 to N-1

FOR j = 1 to N-1

A[i,j] = A[i,j-1] + A[i-1,j];


J 

I 

J 

● After loop Skewing
FOR i = 1 to 2*N-3 

FORPAR j = max(1,i-N+2) to min(i, N-1)
A[i-j+1,j] = A[i-j+1,j-1] + A[i-j,j]; 
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Granularity of Parallelism


● Example
FOR i = 1 to N-1


FOR j = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];


● Gets transformed into 
FOR i = 1 to N-1 

Barrier();
FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)

A[i,j] = A[i,j] + A[i-1,j];
Barrier(); 

● Inner loop parallelism can be expensive 
� Startup and teardown overhead of parallel regions 
� Lot of synchronization 
� Can even lead to slowdowns 

J 

I 
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Granularity of Parallelism


● Inner loop parallelism can be expensive 

● Solutions 
� Don’t parallelize if the amount of work within the loop is 

too small

or

� Transform into outer-loop parallelism 
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Outer Loop Parallelism


I 

J 

● Example J 
FOR i = 1 to N-1


FOR j = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];


I 

● After Loop Transpose
FOR j = 1 to N-1


FOR i = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];


● Get mapped into
Barrier();

FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)


FOR i = 1 to N-1

A[i,j] = A[i,j] + A[i-1,j];


Barrier();
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Outline


● Parallel Execution 
● Parallelizing Compilers 
● Dependence Analysis 
● Increasing Parallelization Opportunities


● Generation of Parallel Loops 
● Communication Code Generation 
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Generating Transformed Loop Bounds 

for i = 1 to n do i
X[i] =...

for j = 1 to i - 1 do 


... = X[j] 

●	 Assume we want to parallelize

the i loop


j 

●	 What are the loop bounds? 

1 ≤ i ≤ n 
●	 Use Projections of the (p, i, j) 1 ≤ j ≤ i-1 

i = pIteration Space 
� Fourier-Motzkin Elimination 


Algorithm
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Space of Iterations


(p, i, j) 
1 ≤ i ≤ n 

1 ≤ j ≤ i-1 
i = p 

p 

i 
j 

for p = 2 to n do
i = p
for j = 1 to i - 1 do 
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Projections


i = p 

for p = 2 to n do 

for j = 1 to i - 1 do 

p 

i 
j 
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Projections


for p = 2 to n do


i = p


for j = 1 to i - 1 do


p = my_pid()
if p >= 2 and p <= n then

i = p
for j = 1 to i - 1 do 
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Fourier Motzkin Elimination


1 ≤ i ≤ n

1 ≤ j ≤ i-1

i = p


● Project i Æ j Æ p 

● Find the bounds of i 
1 ≤ i 

j+1≤ i 
p ≤ i 

i ≤ n 
i ≤ p 

i: max(1, j+1, p) to min(n, p)

i: p 

● Eliminate i 
1 ≤ n

j+1≤ n

p ≤ n


1 ≤ p

j+1≤ p

p ≤ p


1 ≤ j

● Eliminate redundant 

p ≤ n

1 ≤ p

j+1≤ p

1 ≤ j


● Continue onto finding bounds of j 
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Fourier Motzkin Elimination


p ≤ n

1 ≤ p

j+1≤ p

1 ≤ j


● Find the bounds of j

1 ≤ j


j≤ p -1


j: 1 to p – 1 

● Eliminate j 
1 ≤ p – 1

p ≤ n

1 ≤ p


● Eliminate redundant 
2 ≤ p 
p≤ n 

● Find the bounds of p 
2 ≤ p 

p≤ n 
p: 2 to n 

p = my_pid() 
if p >= 2 and p <= n then 

for j = 1 to p - 1 do 
i = p 
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Outline


● Parallel Execution 
● Parallelizing Compilers 
● Dependence Analysis 
● Increasing Parallelization Opportunities


● Generation of Parallel Loops 
● Communication Code Generation 
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Communication Code Generation


● Cache Coherent Shared Memory Machine

� Generate code for the parallel loop nest 

● No Cache Coherent Shared Memory 

or Distributed Memory Machines

� Generate code for the parallel loop nest 
� Identify communication 
� Generate communication code 
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Identify Communication


●	 Location Centric 
� Which locations written by processor 1 is used by 


processor 2?


� Multiple writes to the same location, which one is used? 
� Data Dependence Analysis 

●	 Value Centric 
� Who did the last write on the location read? 

–	 Same processor Æ just read the local copy 
–	 Different processor Æ get the value from the writer 
–	 No one Æ Get the value from the original array 
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Last Write Trees (LWT)


● Input: Read access and Location Centric DependencesValue Centric Dependences 

write access(es) 

for i = 1 to n do 
for j = 1 to n do 

A[j] = …

… = X[j-1]
 j 

i 

● Output: a function mapping
each read iteration to a write 
creating that value 

⊥ 

iw ir = 

jw jr 1–= 

T 

F 

1 j r< 
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The Combined Space


precv 

irecv 

jrecv 

psend 

isend 

the receive iterations……… 1 ≤ irecv ≤ n 
0 ≤ jrecv ≤ irecv -1 

the last-write relation…………… isend = irecv 

computation decomposition for: 
receive iterations…………. Precv = irecv 

send iterations…………….. Psend = isend 

Non-local communication……... Precv ≠ Psend 
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Communication Space


for i = 1 to n do

for j = 1 to n do 

A[j] = … psend

… = X[j-1]


1 ≤ irecv ≤ n precv
0 ≤ jrecv ≤ irecv -1 

isend = irecv jrecvPrecv = irecv


Psend = isend


Precv ≠ Psend


isend 

irecv 
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Communication Loop Nests

psend

isend


precv 
irecv 

jrecv 

Send Loop Nest

for psend = 1 to n - 1 do 

isend = psend 
for precv = isend + 1 to n do 

irecv = precv 
jrecv = isend 
send X[isend] to 

iteration (irecv, jrecv) in 
processor precv 
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psend

isend


precv 
irecv 

jrecv 

Receive Loop Nest

for precv = 2 to n do 

irecv = precv 
for jrecv = 1 to irecv - 1  do 

psend = jrecv 
isend = psend 
receive X[jrecv] from 

iteration isend in 
processor psend 
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Merging Loops


Computation Send Recv 

It
e r

at
io

n s
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Merging Loop Nests 


if p == 1 then
X[p] =...
for pr = p + 1 to n do

send X[p] to iteration (pr, p) in processor pr
if p >= 2 and p <= n - 1 then

X[p] =...
for pr = p + 1 to n do

send X[p] to iteration (pr, p) in processor pr
for j = 1 to p - 1 do

receive X[j] from iteration (j) in processor j
... = X[j]

if p == n then
X[p] =...
for j = 1 to p - 1 do

receive X[j] from iteration (j) in processor j
... = X[j] 
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Communication Optimizations


● Eliminating redundant communication


● Communication aggregation 
● Multi-cast identification 
● Local memory management 
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Summary


● Automatic parallelization of loops with arrays 
� Requires Data Dependence Analysis 
� Iteration space & data space abstraction 
� An integer programming problem 

● Many optimizations that’ll increase parallelism 

● Transforming loop nests and communication code generation

� Fourier-Motzkin Elimination provides a nice framework 
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