Dry Etching

We covered **wet etching** which is essentially *chemical* and *isotropic* (because it is chemical, it is highly *selective*)

Now we consider **dry etching** (which has largely replaced wet) based on highly *anisotropic sputtering process* and may include reactive ions, so can also be *chemical and selective*.

Figure by MIT OCW.

Brief history of two types of etch processes...

2. Widely used SiN passivation layer found difficult to **wet** etch (HF used but it attacks SiO₂),

Reactive species in *plasma* found to accelerate **dry etching:** $CF_4 + O_2$ in plasma much better, and does not attack PR Nov. 14, 2005 6.152J/3.155J 2

Radical Species

Etching

Wet etch (*Chemical: wet, vapor or in plasma*) isotropic (*usually*), highly selective

Used less for VLSI (poor feature size control)

Dry etch (*Physical: ions, momentum transfer*) anisotropic, not selective Sputter etching

More widely used for small features

Combination (Physical & Chemical) Ion-enhanced or Reactive Ion Etching (RIE) combines best of *directionality* and *selectivity*

Review plasmas

1 mT < *p* < 100 mT

RF plasma

f = 13.6 MHz, $\tau \approx 12 \text{ ns}$

e⁻ transit time over 10 cm: $t \approx 10$ ns. e⁻ follows RF field

But wait a minute! If the plasma is a good conductor, does the RF field penetrate it?

What then is the RF field penetration depth, skin depth?

Is this consistent with our argument that plasma is quenched at low *p* by too few collisions, long λ ; small *n*, σ , larger skin depth; $\delta >>l$: quench at high *p* by too little acceleration? large *n*, σ , small skin depth; $\delta << l$: quench

Dry etch combines

Physical etching involves *directional momentum transfer by Ar+, CI+ etc.*

Because momentum is transferred with every collision, sticking is essentially unity, $S \approx 1$. This enhances anisotropic character

Sputter yield depends on angle of incidence, helping planaraization

Chemical etching involves transport and reaction

Reactive species *diffuse* through boundary layer and along surface of wafer

Thermally activated *reaction* at surface gives soluble species

Products *diffuse* through boundary layer, transported away

Advantages: high selectivity due to chemical reactions Disadvantages: Isotropic (except for Si), poor process control (can be transport or reaction limited, just like CVD), strong T-dependence

Chemical etching involves transport and reaction

We saw: $CF_4(g)$ gives F(g)

4F (g) + Si \rightarrow SiF₄ (g) So CF₄(g) can etch Si

Adding O_2 enhances Si etch: O_2 combines with CF_3 , CF_2 reducing their recombination with F. But too much O_2 oxidizes Si.

Chemical etching

Even though free radicals are highly reactive,

multiple steps required result in low effective sticking coefficients, $S \approx 0.01$.

Nov. 14, 2005

Ion-enhanced chemical etching

Physical and chemical processes not just independent of each other. Ion beam can enhance chemical etching:

Ion-enhanced chemical etching

Why does rate of one process depend on the other being present?

Tailor mix of gas as well as ion energy & rate to select desired wall profile. **Possible mechanisms:**

- 1. lons break bonds, render XeF₂ more reactive
- lons increase formation of 2 of volatile byproducts
- Ion beam may 3. sputter away byproducts

Figure by MIT OCW.

Nov. 14, 2005

All that remains: consider, classify various combinations, configurations of physical and chemical etch

Barrel etcher: chemical etching only; shield keeps ion bombardment from wafers. Isotropic and selective like pure *wet* etch, but in gas phase.

> Little damage; Poor uniformity edge to center;

Figure removed for copyright reasons.

Please see: Figure 10-15 in Plummer, J., M. Deal, and P. Griffin. *Silicon VLSI Technology: Fundamentals, Practice, and Modeling.* Upper Saddle River, NJ: Prentice Hall, 2000. ISBN: 0130850373.

Used most for PR removal by O₂: Barrel "asher"

Polymer + $O_2 => CO_2 + H_2O$

Parallel plate; plasma mode etching: similar to PECVD EXCEPT that etch gas is used instead of noble gas. Larger wafer electrode (which defines *plasma mode*) gives weaker ion bombardment of wafers (more uniform etch than barrel) Both *physical* & Figure removed for copyright reasons. chemical etch occur. Please see: Figure 10-9 in Plummer et al, 2000. More *uniform* etch than barrel etcher. At higher p, physical etch contributes less. Gentle Nov. 14, 2005 6.152J/3.155J 16

Parallel plate; reactive ion etching (RIE) mode:

Please see: Figure 10-9 in Plummer et al, 2000.

More appropriately called "*reactive and ion*" etching; smaller etch electrode, greater voltage drop above wafers; incoming ions are more energetic. Greater voltage drop gives greater etch anisotropy and greater physical etch, less selectivity.

> Lower gas pressure (10 - 100 mT) increases mean-free path, increases anisotropy.

Triode sputtering system: separate power supply to separate ion generation from wafer bias voltage.

Aggressive

High-density plasma systems

secondary excitation source that is not capacitively coupled; instead inductively coupled plasma (ICP); growing popularity

Induction coils Dieléctric window, not metallic 10¹¹ - 10¹² ions/cm³

Plasma density no longer depends on pressure. High plasma density can be achieved at lower pressures (1 -10 mT).

Lower gas pressure means more anisotropy... but also more substrate damage

Sputter etching & ion milling

nearly completely physical (not chemical) etching; no reactive gas

Wafers here in position of target in sputter deposition

Anisotropic etch with low selectivity

Problems with ion milling:charging givestrenching,redepositionion path change

Figure removed for copyright reasons.

Can add a reactive species to chamber: "reactive ion-beam etching"

FIB: Focused ion beams (usually Ga) no used to prepare TEM specimens, 3-D structures, shape recording heads

Nov. 14, 2005

Problems with ion milling:

Figure removed for copyright reasons. Please see: Figure 10-20 in Plummer et al, 2000.

Problems with etching

Uniformity: 1. "*bull's eye*": wafer etches faster at outside, less inside (barrel etcher)

> 2. "*Macro-loading*": too many wafers rob others of etchant (long-range gas transport problem)

3. *"Micro-loading":* unmasked large areas hoard etchant (short-range gas transport problem)

Review of etching process

		Pressure	Etch E rate	Energy (eV)	Selectiv'y	Anisot'y
Physical	Sputter et Ion milling	ch 1mT-1 T	enhance	d	low	high
	HDPE 0.1-3 W/cm ²	1- 10 mT	enhance	d 10- 500	high	high
	RIE	10-100 mT	enhance	ed	high	high
	Plasma etch	10-100 mT	low	low	moderate	e moderate
	Barrel etcher	10-100 mT	moderat	e 10 - 700 e	high eV	low
Chemical	Wet etch	irrelevant	enhance	ed	high	low

Etching miscellany

Dial-up the parameters you want:

Etch byproducts should have low boiling point

BOILING POINTS OF TYPICAL ETCH PRODUCTS								
ELEMENT	CHLORIDES	BOILING POINT (°C)	FLUORIDES	BOILING POINT (°C)				
AI	AICI ₃	177.8 (subl.)	AIF ₃	1291 (subl.)				
CU	CuCl	1490	CuF	1100 (subl.)				
Si	SiCl ₄	57.6	SiF ₄	-86				
Ti	TiCl ₃	136.4	TiF ₄	284 (subl.)				
W	WCI ₆	347	WF ₆	17.5				
	WCI ₅	276	WOF ₄	187.5				
	WOCl ₄	227.5						

Figure removed for copyright reasons. Please see: Table 10-3 in Plummer et al, 2000. Figure removed for copyright reasons. Please see: Figure 10-25 in Plummer et al, 2000.

Etching SiO₂ $4F + SiO_2 => SiF_4 + O_2$

Too isotropic and poor selectivity /Si

Solution: reduce F production and increase C