
Chapter 21 

Deviation from the Mean 

21.1 Why the Mean? 

In the previous chapter we took it for granted that expectation is important, and 
we developed a bunch of techniques for calculating expected (mean) values. But 
why should we care about the mean? After all, a random variable may never take 
a value anywhere near its expected value. 

The most important reason to care about the mean value comes from its con­
nection to estimation by sampling. For example, suppose we want to estimate the 
average age, income, family size, or other measure of a population. To do this, we 
determine a random process for selecting people —say throwing darts at census 
lists. This process makes the selected person’s age, income, and so on into a ran­
dom variable whose mean equals the actual average age or income of the population. 
So we can select a random sample of people and calculate the average of people 
in the sample to estimate the true average in the whole population. Many fun­
damental results of probability theory explain exactly how the reliability of such 
estimates improves as the sample size increases, and in this chapter we’ll examine 
a few such results. 

In particular, when we make an estimate by repeated sampling, we need to 
know how much confidence we should have that our estimate is OK. Technically, 
this reduces to finding the probability that an estimate deviates a lot from its ex­
pected value. This topic of deviation from the mean is the focus of this final chapter. 

21.2 Markov’s Theorem 

Markov’s theorem is an easy result that gives a generally rough estimate of the 
probability that a random variable takes a value much larger than its mean. 

The idea behind Markov’s Theorem can be explained with a simple example of 
intelligence quotient, IQ. This quantity was devised so that the average IQ measure­
ment would be 100. Now from this fact alone we can conclude that at most 1/3 the 
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population can have an IQ of 300 or more, because if more than a third had an IQ 
of 300, then the average would have to be more than (1/3)300 = 100, contradicting 
the fact that the average is 100. So the probability that a randomly chosen person 
has an IQ of 300 or more is at most 1/3. Of course this is not a very strong con­
clusion; in fact no IQ of over 300 has ever been recorded. But by the same logic, 
we can also conclude that at most 2/3 of the population can have an IQ of 150 or 
more. IQ’s of over 150 have certainly been recorded, though again, a much smaller 
fraction than 2/3 of the population actually has an IQ that high. 

But although these conclusions about IQ are weak, they are actually the strongest 
general conclusions that can be reached about a random variable using only the fact 
that it is nonnegative and its mean is 100. For example, if we choose a random vari­
able equal to 300 with probability 1/3, and 0 with probability 2/3, then its mean is 
100, and the probability of a value of 300 or more really is 1/3. So we can’t hope to 
get a better upper bound based solely on this limited amount of information. 

Theorem 21.2.1 (Markov’s Theorem). If R is a nonnegative random variable, then for 
all x > 0 

.Pr {R ≥ x} ≤ 
E 

x 
[R] 

Proof. For any x > 0 

E [R] ::= y Pr {R = y} 
y∈range(R) 

≥ y Pr {R = y} (because R ≥ 0) 
y≥x,


y∈range(R)


≥ x Pr {R = y}
y≥x,


y∈range(R)


= x Pr {R = y}
y≥x,


y∈range(R)


= x Pr {R ≥ x} . (21.1) 

Dividing the first and last expression (21.1) by x gives the desired result. � 

Our focus is deviation from the mean, so it’s useful to rephrase Markov’s The­
orem this way: 

Corollary 21.2.2. If R is a nonnegative random variable, then for all c ≥ 1 

1
Pr {R ≥ c · E [R]} ≤ 

c
. (21.2) 

This Corollary follows immediately from Markov’s Theorem(21.2.1) by letting 
x be c E [R].· 
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21.2.1 Applying Markov’s Theorem 

Let’s consider the Hat-Check problem again. Now we ask what the probability is 
that x or more men get the right hat, this is, what the value of Pr {G ≥ x} is. 

We can compute an upper bound with Markov’s Theorem. Since we know 
E [G] = 1, Markov’s Theorem implies 

= .Pr {G ≥ x} ≤ 
E 

x 
[G] 

x 
1 

For example, there is no better than a 20% chance that 5 men get the right hat, 
regardless of the number of people at the dinner party. 

The Chinese Appetizer problem is similar to the Hat-Check problem. In this 
case, n people are eating appetizers arranged on a circular, rotating Chinese ban­
quet tray. Someone then spins the tray so that each person receives a random 
appetizer. What is the probability that everyone gets the same appetizer as before? 

There are n equally likely orientations for the tray after it stops spinning. Ev­
eryone gets the right appetizer in just one of these n orientations. Therefore, the 
correct answer is 1/n. 

But what probability do we get from Markov’s Theorem? Let the random vari­
able, R, be the number of people that get the right appetizer. Then of course 
E [R] = 1 (right?), so applying Markov’s Theorem, we find: 

= .Pr {R ≥ n} ≤ 
E 

n 
[R] 

n 
1 

So for the Chinese appetizer problem, Markov’s Theorem is tight! 
On the other hand, Markov’s Theorem gives the same 1/n bound for the prob­

ability everyone gets their hat in the Hat-Check problem in the case that all per­
mutations are equally likely. But the probability of this event is 1/(n!). So for this 
case, Markov’s Theorem gives a probability bound that is way off. 

21.2.2 Markov’s Theorem for Bounded Variables 

Suppose we learn that the average IQ among MIT students is 150 (which is not 
true, by the way). What can we say about the probability that an MIT student has 
an IQ of more than 200? Markov’s theorem immediately tells us that no more than 
150/200 or 3/4 of the students can have such a high IQ. Here we simply applied 
Markov’s Theorem to the random variable, R, equal to the IQ of a random MIT 
student to conclude: 

Pr {R > 200} ≤ 
E [R] 150 3 

= = .
200 200 4 

But let’s observe an additional fact (which may be true): no MIT student has an 
IQ less than 100. This means that if we let T ::= R − 100, then T is nonnegative and 
E [T ] = 50, so we can apply Markov’s Theorem to T and conclude: 

Pr {R > 200} = Pr {T > 100} ≤ 
E [T ]

= 
50 

=
1 
.

100 100 2 
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So only half, not 3/4, of the students can be as amazing as they think they are. A 
bit of a relief! 

More generally, we can get better bounds applying Markov’s Theorem to R − l 
instead of R for any lower bound l > 0 on R. 

Similarly, if we have any upper bound, u, on a random variable, S, then u − S 
will be a nonnegative random variable, and applying Markov’s Theorem to u − S 
will allow us to bound the probability that S is much less than its expectation. 

21.2.3 Problems 

Class Problems 

Problem 21.1. 
A herd of cows is stricken by an outbreak of cold cow disease. The disease lowers 
the normal body temperature of a cow, and a cow will die if its temperature goes 
below 90 degrees F. The disease epidemic is so intense that it lowered the average 
temperature of the herd to 85 degrees. Body temperatures as low as 70 degrees, 
but no lower, were actually found in the herd. 
(a) Prove that at most 3/4 of the cows could have survived. 

Hint: Let T be the temperature of a random cow. Make use of Markov’s bound. 

(b) Suppose there are 400 cows in the herd. Show that the bound of part (a) is 
best possible by giving an example set of temperatures for the cows so that the 
average herd temperature is 85, and with probability 3/4, a randomly chosen cow 
will have a high enough temperature to survive. 

21.3 Chebyshev’s Theorem 

There’s a really good trick for getting more mileage out of Markov’s Theorem: 
instead of applying it to the variable, R, apply it to some function of R. One useful 
choice of functions to use turns out to be taking a power of |R|. 

In particular, since |R α is nonnegative, Markov’s inequality also applies to the 
α 

|
event [|R| ≥ xα]. But this event is equivalent to the event [|R| ≥ x], so we have: 

Lemma 21.3.1. For any random variable R, α ∈ R+, and x > 0, 

Pr {|R| ≥ x} ≤ 
E [

x

|R
α

| α] 
. 

Rephrasing (21.3.1) in terms of the random variable, |R − E [R]|, that measures 
R’s deviation from its mean, we get 

Pr {|R − E [R]| ≥ x} ≤ 
E [(R − 

xα 

E [R])α] 
. (21.3) 

The case when α = 2 is turns out to be so important that numerator of the right 
hand side of (21.3) has been given a name: 



� � 

� � 

� 

� 

493 21.3. CHEBYSHEV’S THEOREM 

Definition 21.3.2. The variance, Var [R], of a random variable, R, is: 

Var [R] ::= E (R − E [R])2 . 

The restatement of (21.3) for α = 2 is known as Chebyshev’s Theorem. 

Theorem 21.3.3 (Chebyshev). Let R be a random variable and x ∈ R+. Then 

Pr {|R − E [R]
Var [R] 

.| ≥ x} ≤ 
x2 

The expression E (R − E [R])2 for variance is a bit cryptic; the best approach 
is to work through it from the inside out. The innermost expression, R − E [R], is 
precisely the deviation of R above its mean. Squaring this, we obtain, (R − E [R])2 . 
This is a random variable that is near 0 when R is close to the mean and is a large 
positive number when R deviates far above or below the mean. So if R is always 
close to the mean, then the variance will be small. If R is often far from the mean, 
then the variance will be large. 

21.3.1 Variance in Two Gambling Games 

The relevance of variance is apparent when we compare the following two gam­
bling games. 

Game A: We win $2 with probability 2/3 and lose $1 with probability 1/3. 
Game B: We win $1002 with probability 2/3 and lose $2001 with probability 

1/3. 
Which game is better financially? We have the same probability, 2/3, of win­

ning each game, but that does not tell the whole story. What about the expected 
return for each game? Let random variables A and B be the payoffs for the two 
games. For example, A is 2 with probability 2/3 and -1 with probability 1/3. We 
can compute the expected payoff for each game as follows: 

2 1
E [A] = 2 · 

3 
+ (−1) · 

3 
= 1, 

2 1
E [B] = 1002 · 

3 
+ (−2001) · 

3 
= 1. 

The expected payoff is the same for both games, but they are obviously very 
different! This difference is not apparent in their expected value, but is captured 
by variance. We can compute the Var [A] by working “from the inside out” as 
follows: 

A − E [A] = 
1 with probability 3

2 

−2 with probability 3
1 

(A − E [A])2 =
1 with probability 2 

3 
4 with probability 13 � � 2 1

E (A − E [A])2 = 1 · 
3 

+ 4 · 
3


Var [A] = 2.
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Similarly, we have for Var [B]: � 

B − E [B] = � 

1001 
−2002 

with probability
with probability

1, 002, 001 

2 
3
1 
3 

(B − E [B])2 = 
with probability 2 

3
1 
34, 008, 004 with probability� � 2 1

E (B − E [B])2 = 1, 002, 001 · 
3 

+ 4, 008, 004 · 
3 

Var [B] = 2, 004, 002. 

The variance of Game A is 2 and the variance of Game B is more than two 
million! Intuitively, this means that the payoff in Game A is usually close to the 
expected value of $1, but the payoff in Game B can deviate very far from this 
expected value. 

High variance is often associated with high risk. For example, in ten rounds 
of Game A, we expect to make $10, but could conceivably lose $10 instead. On 
the other hand, in ten rounds of game B, we also expect to make $10, but could 
actually lose more than $20,000! 

21.3.2 Standard Deviation 

Because of its definition in terms of the square of a random variable, the variance of 
a random variable may be very far from a typical deviation from the mean. For ex­
ample, in Game B above, the deviation from the mean is 1001 in one outcome and 
-2002 in the other. But the variance is a whopping 2,004,002. From a dimensional 
analysis viewpoint, the “units” of variance are wrong: if the random variable is in 
dollars, then the expectation is also in dollars, but the variance is in square dollars. 
For this reason, people often describe random variables using standard deviation 
instead of variance. 

Definition 21.3.4. The standard deviation, σR, of a random variable, R, is the square 
root of the variance: 

σR ::= Var [R] = E [(R − E [R])2]. 

So the standard deviation is the square root of the mean of the square of the 
deviation, or the root mean square for short. It has the same units —dollars in our 
example —as the original random variable and as the mean. Intuitively, it mea­
sures the average deviation from the mean, since we can think of the square root 
on the outside as canceling the square on the inside. 
Example 21.3.5. The standard deviation of the payoff in Game B is: 

σB = Var [B] = 2, 004, 002 ≈ 1416. 

The random variable B actually deviates from the mean by either positive 1001 
or negative 2002; therefore, the standard deviation of 1416 describes this situation 
reasonably well. 
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mean

0 100stdev

Figure 21.1: The standard deviation of a distribution indicates how wide the “main 
part” of it is. 

Intuitively, the standard deviation measures the “width” of the “main part” of 
the distribution graph, as illustrated in Figure 21.1. 

It’s useful to rephrase Chebyshev’s Theorem in terms of standard deviation. 

Corollary 21.3.6. Let R be a random variable, and let c be a positive real number. 

1 
.Pr {|R − E [R]| ≥ cσR} ≤ 

c2 

Here we see explicitly how the “likely” values of R are clustered in an O(σR)­
sized region around E [R], confirming that the standard deviation measures how 
spread out the distribution of R is around its mean. 

Proof. Substituting x = cσR in Chebyshev’s Theorem gives: 

σ2 

= = . 
Var [R] R 1

Pr {|R − E [R]| ≥ cσR} ≤ 
(cσR)2 (cσR)2 c2 

The IQ Example 

Suppose that, in addition to the national average IQ being 100, we also know the 
standard deviation of IQ’s is 10. How rare is an IQ of 300 or more? 

Let the random variable, R, be the IQ of a random person. So we are sup­
posing that E [R] = 100, σR = 10, and R is nonnegative. We want to compute 
Pr {R ≥ 300}. 

We have already seen that Markov’s Theorem 21.2.1 gives a coarse bound, 
namely, 

1
Pr {R ≥ 300} ≤ 

3 
. 
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Now we apply Chebyshev’s Theorem to the same problem: 

Pr {R ≥ 300} = Pr {|R − 100 ≥ 200} ≤ 
Var [R]

= 
102 

=
1 

.| 
2002 2002 400 

So Chebyshev’s Theorem implies that at most one person in four hundred has 
an IQ of 300 or more. We have gotten a much tighter bound using the additional 
information, namely the variance of R, than we could get knowing only the expec­
tation. 

21.4 Properties of Variance 

The definition of variance of R as E (R − E [R])2 may seem rather arbitrary. A 
direct measure of average deviation would be E [ |R − E [R]| ]. But the direct mea­
sure doesn’t have the many useful properties that variance has, which is what this 
section is about. 

21.4.1 A Formula for Variance 

Applying linearity of expectation to the formula for variance yields a convenient 
alternative formula. 

Lemma 21.4.1. � � 
Var [R] = E R2 − E2 [R] , 

for any random variable, R. 

Here we use the notation E2 [R] as shorthand for (E [R])2 . 

Proof. Let µ = E [R]. Then 

Var [R] = E (R − E [R])2 (Def 21.3.2 of variance) 

= E (R − µ)2 (def of µ) 

= E R2 − 2µR + µ 2

= E R2 − 2µ E [R] + µ 2 (linearity of expectation) 

= E R2 − 2µ 2 + µ 2 (def of µ) 

= E R2 − µ 2 

= E R2 − E2 [R] . (def of µ) 

For example, if B is a Bernoulli variable where p ::= Pr {B = 1}, then 

Lemma 21.4.2. 
Var [B] = p − p 2 = p(1 − p). (21.4) 

Proof. By Lemma 20.3.3, E [B] = p. But since B only takes values 0 and 1, B2 = B. 
So Lemma 21.4.2 follows immediately from Lemma 21.4.1. � 
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21.4.2 Variance of Time to Failure 

According to section 20.3.3, the mean time to failure is 1/p for a process that fails 
during any given hour with probability p. What about the variance? That is, let 
C be the hour of the first failure, so Pr {C = i} = (1 − p)i−1p. We’d like to find a 
formula for Var [C]. 

By Lemma 21.4.1, 

Var [C] = E C2 − (1/p)2 (21.5) 

so all we need is a formula for E C2 : 

E C2 ::= i2(1 − p)i−1 p 
i≥1 

= p i2 x i−1 (where x = 1 − p). (21.6) 
i≥1 

But (17.2) gives the generating function x(1+x)/(1−x)3 for the nonnegative integer 
squares, and this implies that the generating function for the sum in (21.6) is (1 + 
x)/(1 − x)3. So, 

� 
C2
� (1 + x)

E = p 
(1 − x)3 

(where x = 1 − p) 

2 + p
= p

p3 

=
1 
p

−
2 

p 
+ 

p

1 
2 
, (21.7) 

Combining (21.5) and (21.7) gives a simple answer: 

Var [C] = 
1 
p

−
2 

p
. (21.8) 

It’s great to be able apply generating function expertise to knock off equa­
tion (21.8) mechanically just from the definition of variance, but there’s a more 
elementary, and memorable, alternative. In section 20.3.3 we used conditional ex­
pectation to find the mean time to failure, and a similar approach works for the 
variance. Namely, the expected value of C2 is the probability, p, of failure in the 
first hour times 12, plus (1 − p) times the expected value of (C + 1)2. So 

E C2 = p 12 + (1 − p) E (C + 1)2· � � � � 2 
= p + (1 − p) E C2 + + 1 , 

p 

which directly simplifies to (21.7). 
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21.4.3 Dealing with Constants 

It helps to know how to calculate the variance of aR + b: 

Theorem 21.4.3. Let R be a random variable, and a a constant. Then 

Var [aR] = a 2 Var [R] . (21.9) 

Proof. Beginning with the definition of variance and repeatedly applying linearity 
of expectation, we have: 

Var [aR] ::= E (aR − E [aR])2

= E (aR)2 − 2aR E [aR] + E2 [aR] 

= E (aR)2 − E [2aR E [aR]] + E2 [aR] 

= a 2 E R2 − 2 E [aR] E [aR] + E2 [aR] 

= a 2 E R2 − a 2E2 [R] 

= a 2 E R2 − E2 [R] 

= a 2 Var [R] (by Lemma 21.4.1) 

It’s even simpler to prove that adding a constant does not change the variance, 
as the reader can verify: 

Theorem 21.4.4. Let R be a random variable, and b a constant. Then 

Var [R + b] = Var [R] . (21.10) 

Recalling that the standard deviation is the square root of variance, this implies 
that the standard deviation of aR + b is simply |a| times the standard deviation of 
R: 

Corollary 21.4.5. 
σaR+b = |a| σR. 

21.4.4 Variance of a Sum 

In general, the variance of a sum is not equal to the sum of the variances, but 
variances do add for independent variables. In fact, mutual independence is not 
necessary: pairwise independence will do. This is useful to know because there are 
some important situations involving variables that are pairwise independent but 
not mutually independent. 

Theorem 21.4.6. If R1 and R2 are independent random variables, then 

Var [R1 + R2] = Var [R1] + Var [R2] . (21.11) 
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Proof. We may assume that E [Ri] = 0 for i = 1, 2, since we could always replace 
Ri by Ri − E [Ri] in equation (21.11). This substitution preserves the independence 
of the variables, and by Theorem 21.4.4, does not change the variances. 

Now by Lemma 21.4.1, Var [Ri] = E Ri 
2 and Var [R1 + R2] = E (R1 + R2)2 , 

so we need only prove 

E (R1 + R2)2 = E R1
2 + E R2

2 . (21.12) 

But (21.12) follows from linearity of expectation and the fact that 

E [R1R2] = E [R1] E [R2] (21.13) 

since R1 and R2 are independent: 

E (R1 + R2)2 = E R1
2 + 2R1R2 + R2

2 

= E R2
1 + 2 E [R1R2] + E R2

2 

= E R2
1 + 2 E [R1] E [R2] + E R2

2 (by (21.13)) 

= E R2 + 2 0 0 + E R2 � 1� · � · � 2 

= E R2
1 + E R2

2 

An independence condition is necessary. If we ignored independence, then we 
would conclude that Var [R + R] = Var [R]+ Var [R]. However, by Theorem 21.4.3, 
the left side is equal to 4 Var [R], whereas the right side is 2 Var [R]. This implies that 
Var [R] = 0, which, by the Lemma above, essentially only holds if R is constant. 

The proof of Theorem 21.4.6 carries over straightforwardly to the sum of any 
finite number of variables. So we have: 

Theorem 21.4.7. [Pairwise Independent Additivity of Variance] If R1, R2, . . . , Rn are 
pairwise independent random variables, then 

Var [R1 + R2 + + Rn] = Var [R1] + Var [R2] + + Var [Rn] . (21.14)· · · · · · 

Now we have a simple way of computing the variance of a variable, J , that 
has an (n, p)-binomial distribution. We know that J = k

n 
=1 Ik where the Ik are 

mutually independent indicator variables with Pr {Ik = 1} = p. The variance of 
each Ik is p(1 − p) by Lemma 21.4.2, so by linearity of variance, we have 

Lemma (Variance of the Binomial Distribution). If J has the (n, p)-binomial distribu­
tion, then 

Var [J ] = n Var [Ik] = np(1 − p). (21.15) 

21.4.5 Problems 

Practice Problems 

Problem 21.2. 
A gambler plays 120 hands of draw poker, 60 hands of black jack, and 20 hands of 
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stud poker per day. He wins a hand of draw poker with probability 1/6, a hand of 
black jack with probability 1/2, and a hand of stud poker with probability 1/5. 
(a) What is the expected number of hands the gambler wins in a day? 

(b) What would the Markov bound be on the probability that the gambler will 
win at least 108 hands on a given day? 

(c) Assume the outcomes of the card games are pairwise independent. What is 
the variance in the number of hands won per day? 

(d) What would the Chebyshev bound be on the probability that the gambler 
will win at least 108 hands on a given day? You may answer with a numerical 
expression that is not completely evaluated. 

Class Problems 

Problem 21.3. 
The hat-check staff has had a long day serving at a party, and at the end of the 
party they simply return people’s hats at random. Assume that n people checked 
hats at the party. 
(a)	 What is the expected number of people who get their own hat back?


Let Xi = �
1 be the indicator variable for the ith person getting their own hat 
back. Let Sn = n

i=1 Xi, so Sn is the total number of people who get their own hat 
back. 
(b) Write a simple formula for E [XiXj ] for i =� j. Hint: What is Pr {Xj = 1 | Xi = 1}? 

(c) Explain why you cannot use the variance of sums formula to calculate Var [Sn]. 

(d) Show that E Sn 
2 = 2. Hint: Xi 

2 = Xi. 

(e) What is the variance of Sn? 

(f) Use the Chebyshev bound to show that the probability that 11 or more people 
get their own hat back is at most 0.01. 

Problem 21.4. 
For any random variable, R, with mean, µ, and standard deviation, σ, the Cheby­
shev Bound says that for any real number x > 0, � σ �2 

.Pr {|R − µ| ≥ x} ≤ 
x 

Show that for any real number, µ, and real numbers x ≥ σ > 0, there is an R for 
which the Chebyshev Bound is tight, that is, � σ �2 

Pr {|R| ≥ x} = 
x

. (21.16) 
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Hint: First assume µ = 0 and let R only take values 0, −x, and x. 

Problem 21.5. 
Let R be a positive integer valued random variable such that 

1 
fR(n) = , 

cn3 

where 
∞ 1 

c ::= . 
n3 

n=1 

(a) Prove that E [R] is finite. 

(b) Prove that Var [R] is infinite. 

Homework Problems 

Problem 21.6. 
There is a “one-sided” version of Chebyshev’s bound for deviation above the mean: 

Lemma (One-sided Chebyshev bound). 

Var [R] 
.Pr {R − E [R] ≥ x} ≤ 

x2 + Var [R] 

Hint: Let Sa ::= (R − E [R] + a)2, for 0 ≤ a ∈ R. So R − E [R] ≥ x implies 
Sa ≥ (x+a)2. Apply Markov’s bound to Pr Sa ≥ (x + a)2 . Choose a to minimize 
this last bound. 

Problem 21.7. 
A man has a set of n keys, one of which fits the door to his apartment. He tries 
the keys until he finds the correct one. Give the expectation and variance for the 
number of trials until success if 
(a) he tries the keys at random (possibly repeating a key tried earlier) 

(b) he chooses keys randomly from among those he has not yet tried. 

21.5 Estimation by Random Sampling 

Polling again 

Suppose we had wanted an advance estimate of the fraction of the Massachusetts 
voters who favored Scott Brown over everyone else in the recent Democratic pri­
mary election to fill Senator Edward Kennedy’s seat. 
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Let p be this unknown fraction, and let’s suppose we have some random pro­
cess —say throwing darts at voter registration lists —which will select each voter 
with equal probability. We can define a Bernoulli variable, K, by the rule that 
K = 1 if the random voter most prefers Brown, and K = 0 otherwise. 

Now to estimate p, we take a large number, n, of random choices of voters1 

and count the fraction who favor Brown. That is, we define variables K1, K2, . . . , 
where Ki is interpreted to be the indicator variable for the event that the ith cho­
sen voter prefers Brown. Since our choices are made independently, the Ki’s are 
independent. So formally, we model our estimation process by simply assuming 
we have mutually independent Bernoulli variables K1, K2, . . . , each with the same 
probability, p, of being equal to 1. Now let Sn be their sum, that is, 

n

Sn ::= Ki. (21.17) 
� 

i=1 

So Sn has the binomial distribution with parameter n, which we can choose, and 
unknown parameter p. 

The variable Sn/n describes the fraction of voters we will sample who favor 
Scott Brown. Most people intuitively expect this sample fraction to give a useful 
approximation to the unknown fraction, p —and they would be right. So we will 
use the sample value, Sn/n, as our statistical estimate of p and use the Pairwise 
Independent Sampling Theorem 21.5.1 to work out how good an estinate this is. 

21.5.1 Sampling 

Suppose we want our estimate to be within 0.04 of the Brown favoring fraction, p, 
at least 95% of the time. This means we want 

Pr − p 
Sn 

n 
≤ 0.04 ≥ 0.95 . (21.18) 

So we better determine the number, n, of times we must poll voters so that inequal­
ity (21.18) will hold. 

Now Sn is binomially distributed, so from (21.15) we have 

1 n
Var [Sn] = n(p(1 − p)) ≤ n · 

4
=

4 

The bound of 1/4 follows from the fact that p(1 − p) is maximized when p = 1 − p, 
that is, when p = 1/2 (check this yourself!). 

1We’re choosing a random voter n times with replacement. That is, we don’t remove a chosen voter 
from the set of voters eligible to be chosen later; so we might choose the same voter more than once in 
n tries! We would get a slightly better estimate if we required n different people to be chosen, but doing 
so complicates both the selection process and its analysis, with little gain in accuracy. 
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Next, we bound the variance of Sn/n: �21Sn = Var [Sn
n n �21 n ≤ 

n 4 
(by (21.5.1)) 

= (21.19)
4n 

Now from Chebyshev and (21.19) we have: 

�
1 

Var ] (by (21.9)) 

Pr − p ≥ 0.04 ≤ 
Var [Sn/n] 1 156.25 

= = 
(0.04)2 4n(0.04)2 n 

(21.20)
Sn 

n 

To make our our estimate with 95% confidence, we want the righthand side 
of (21.20) to be at most 1/20. So we choose n so that 

156.25 1 
, 

n 
≤ 

20 

that is, 
n ≥ 3, 125. 

A more exact calculation of the tail of this binomial distribution shows that the 
above sample size is about four times larger than necessary, but it is still a feasible 
size to sample. The fact that the sample size derived using Chebyshev’s Theorem 
was unduly pessimistic should not be surprising. After all, in applying the Cheby­
shev Theorem, we only used the variance of Sn. It makes sense that more detailed 
information about the distribution leads to better bounds. But working through 
this example using only the variance has the virtue of illustrating an approach to 
estimation that is applicable to arbitrary random variables, not just binomial vari­
ables. 

21.5.2 Matching Birthdays 

There are important cases where the relevant distributions are not binomial be­
cause the mutual independence properties of the voter preference example do not 
hold. In these cases, estimation methods based on the Chebyshev bound may 
be the best approach. Birthday Matching is an example. We already saw in Sec­
tion 18.5 that in a class of 85 students it is virtually certain that two or more stu­
dents will have the same birthday. This suggests that quite a few pairs of students 
are likely to have the same birthday. How many? 

So as before, suppose there are n students and d days in the year, and let D be 
the number of pairs of students with the same birthday. Now it will be easy to 
calculate the expected number of pairs of students with matching birthdays. Then 
we can take the same approach as we did in estimating voter preferences to get 
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an estimate of the probability of getting a number of pairs close to the expected 
number. 

Unlike the situation with voter preferences, having matching birthdays for dif­
ferent pairs of students are not mutually independent events, but the matchings 
are pairwise independent, as explained in Section 18.5. as we did for voter preference. 
Namely, let B1, B2, . . . , Bn be the birthdays of n independently chosen people, and 
let Ei,j be the indicator variable for the event that the ith and jth people chosen 
have the same birthdays, that is, the event [Bi = Bj ]. So our probability model, 
the Bi’s are mutually independent variables, the Ei,j ’s are pairwise independent. 
Also, the expectations of Ei,j for i =� j equals the probability that Bi = Bj , namely, 
1/d. 

Now, D, the number of matching pairs of birthdays among the n choices is 
simply the sum of the Ei,j ’s: 

D ::= Ei,j . (21.21) 
1≤i<j≤n 

So by linearity of expectation ⎡ ⎤ 

E [D] = E ⎣ 
� 

Ei,j ⎦ = 
� 

E [Ei,j ] = 
n 
2 
· 1 
d 
. 

1≤i<j≤n 1≤i<j≤n 

Similarly, ⎡ ⎤ � 
Var [D] = Var ⎣ Ei,j ⎦ 

1≤i<j≤n 

= Var [Ei,j ] (by Theorem 21.4.7) 
1≤i<j≤n 

n 1 1 
=

2 
· 
d 

1 − 
d

. (byLemma 21.4.2) 

In particular, for a class of n = 85 students with d = 365 possible birthdays, we 
have E [D] ≈ 9.7 and Var [D] < 9.7(1 − 1/365) < 9.7. So by Chebyshev’s Theorem 

9.7 
.Pr {|D − 9.7| ≥ x} <

x2 

Letting x = 5, we conclude that there is a better than 50% chance that in a 
class of 85 students, the number of pairs of students with the same birthday will 
be between 5 and 14. 

21.5.3 Pairwise Independent Sampling 

The reasoning we used above to analyze voter polling and matching birthdays is 
very similar. We summarize it in slightly more general form with a basic result we 
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call the Pairwise Independent Sampling Theorem. In particular, we do not need 
to restrict ourselves to sums of zero-one valued variables, or to variables with the 
same distribution. For simplicity, we state the Theorem for pairwise independent 
variables with possibly different distributions but with the same mean and vari­
ance. 

Theorem 21.5.1 (Pairwise Independent Sampling). Let G1, . . . , Gn be pairwise inde­
pendent variables with the same mean, µ, and deviation, σ. Define 

n

Sn ::= Gi. (21.22) 
� 

i=1 

Then �
Pr − µ 

1 �σ �2Sn 
.≥ x ≤ 

n xn 

Proof. We observe first that the expectation of Sn/n is µ: 
n 

Gii=1SnE = E (def of Sn) 
n n 

n 
i=1 E [Gi] (linearity of expectation) = 

n 
n 
i=1 µ= 
n 

nµ
= = µ. 

n 

The second important property of Sn/n is that its variance is the variance of Gi 

divided by n: �21Sn =Var Var [Sn] (by (21.9)) 
n n 

n1 
Var Gi (def of Sn)= 

n2 
i=1 

n

= 
n2 

i=1 

1 
Var [Gi] (pairwise independent additivity) 

1 σ2 

= nσ2 = . (21.23) 
n2 
· 

n 

This is enough to apply Chebyshev’s Theorem and conclude: 

Pr 
Sn − µ 

Var [Sn/n] 
(Chebyshev’s bound) .≥ x ≤ 

x2n 

σ2/n
= 

x2 
(by (21.23)) 

1 σ �2 
= . 

n x 
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The Pairwise Independent Sampling Theorem provides a precise general state­
ment about how the average of independent samples of a random variable ap­
proaches the mean. In particular, it proves what is known as the Law of Large 
Numbers2 : by choosing a large enough sample size, we can get arbitrarily accu­
rate estimates of the mean with confidence arbitrarily close to 100%. 

Corollary 21.5.2. [Weak Law of Large Numbers] Let G1, . . . , Gn be pairwise independent 
variables with the same mean, µ, and the same finite deviation, and let 

n 
Gi

Sn ::= i=1 . 
n 

Then for every � > 0, 
lim Pr {|Sn − µ| ≤ �} = 1. 

n→∞ 

21.6 Confidence versus Probability 

So Chebyshev’s Bound implies that sampling 3,125 voters will yield a fraction that, 
95% of the time, is within 0.04 of the actual fraction of the voting population who 
prefer Brown. 

Notice that the actual size of the voting population was never considered be­
cause it did not matter. People who have not studied probability theory often insist 
that the population size should matter. But our analysis shows that polling a little 
over 3000 people people is always sufficient, whether there are ten thousand, or 
million, or billion . . . voters. You should think about an intuitive explanation that 
might persuade someone who thinks population size matters. 

Now suppose a pollster actually takes a sample of 3,125 random voters to es­
timate the fraction of voters who prefer Brown, and the pollster finds that 1250 of 
them prefer Brown. It’s tempting, but sloppy, to say that this means: 

False Claim. With probability 0.95, the fraction, p, of voters who prefer Brown is 1250/3125±
0.04. Since 1250/3125 − 0.04 > 1/3, there is a 95% chance that more than a third of the 
voters prefer Brown to all other candidates. 

What’s objectionable about this statement is that it talks about the probability 
or “chance” that a real world fact is true, namely that the actual fraction, p, of 
voters favoring Brown is more than 1/3. But p is what it is, and it simply makes no 
sense to talk about the probability that it is something else. For example, suppose 
p is actually 0.3; then it’s nonsense to ask about the probability that it is within 0.04 
of 1250/3125 —it simply isn’t. 

This example of voter preference is typical: we want to estimate a fixed, un­
known real-world quantity. But being unknown does not make this quantity a random 
variable, so it makes no sense to talk about the probability that it has some property. 

2This is the Weak Law of Large Numbers. As you might suppose, there is also a Strong Law, but it’s 
outside the scope of 6.042. 
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A more careful summary of what we have accomplished goes this way: 

We have described a probabilistic procedure for estimating the value of 
the actual fraction, p. The probability that our estimation procedure will 
yield a value within 0.04 of p is 0.95. 

This is a bit of a mouthful, so special phrasing closer to the sloppy language is 
commonly used. The pollster would describe his conclusion by saying that 

At the 95% confidence level, the fraction of voters who prefer Brown is 
1250/3125 ± 0.04. 

So confidence levels refer to the results of estimation procedures for real-world 
quantities. The phrase “confidence level” should be heard as a reminder that some 
statistical procedure was used to obtain an estimate, and in judging the credibility 
of the estimate, it may be important to learn just what this procedure was. 

21.6.1 Problems 

Practice Problems 

Problem 21.8. 
You work for the president and you want to estimate the fraction p of voters in 
the entire nation that will prefer him in the upcoming elections. You do this by 
random sampling. Specifically, you select n voters independently and randomly, 
ask them who they are going to vote for, and use the fraction P of those that say 
they will vote for the President as an estimate for p. 
(a) Our theorems about sampling and distributions allow us to calculate how con­

fident we can be that the random variable, P , takes a value near the constant, p. 
This calculation uses some facts about voters and the way they are chosen. Which 
of the following facts are true? 

1. Given a particular voter, the probability of that voter preferring the President 
is p. 

2. Given a particular voter, the probability of that voter preferring the President 
is 1 or 0. 

3. The probability that some voter is chosen more than once in the sequence goes 
to zero as n increases. 

4. All voters are equally likely to be selected as the third in our sequence of n 
choices of voters (assuming n ≥ 3). 

5. The probability that the second voter chosen will favor the President, given 
that the first voter chosen prefers the President, is greater than p. 

6. The probability that the second voter chosen will favor the President, given 
that the second voter chosen is from the same state as the first, may not equal 
p. 
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(b) Suppose that according to your calculations, the following is true about your 
polling: 

Pr {|P − p| ≤ 0.04} ≥ 0.95. 

You do the asking, you count how many said they will vote for the President, you 
divide by n, and find the fraction is 0.53. You call the President, and . . . what do 
you say? 

1. Mr. President, p = 0.53! 

2. Mr. President, with probability at least 95 percent, p is within 0.04 of 0.53. 

3. Mr. President, either p is within 0.04 of 0.53 or something very strange (5-in­
100) has happened. 

4. Mr. President, we can be 95% confident that p is within 0.04 of 0.53. 

Class Problems 

Problem 21.9. 
A recent Gallup poll found that 35% of the adult population of the United States 
believes that the theory of evolution is “well-supported by the evidence.” Gallup 
polled 1928 Americans selected uniformly and independently at random. Of these, 
675 asserted belief in evolution, leading to Gallup’s estimate that the fraction of 
Americans who believe in evolution is 675/1928 ≈ 0.350. Gallup claims a margin 
of error of 3 percentage points, that is, he claims to be confident that his estimate is 
within 0.03 of the actual percentage. 
(a) What is the largest variance an indicator variable can have? 

(b) Use the Pairwise Independent Sampling Theorem to determine a confidence 
level with which Gallup can make his claim. 

(c) Gallup actually claims greater than 99% confidence in his estimate. How 
might he have arrived at this conclusion? (Just explain what quantity he could 
calculate; you do not need to carry out a calculation.) 

(d) Accepting the accuracy of all of Gallup’s polling data and calculations, can 
you conclude that there is a high probability that the number of adult Americans 
who believe in evolution is 35 ± 3 percent? 

Problem 21.10. 
Suppose there are n students and d days in the year, and let D be the number of 
pairs of students with the same birthday. Let B1, B2, . . . , Bn be the birthdays of n 
independently chosen people, and let Ei,j be the indicator variable for the event 
[Bi = Bj ]. 
(a) What are E [Ei,j ] and Var [Ei,j ]? 
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(b) What is E [D]? 

(c) What is Var [D]? 

(d) In a 6.01 class of 500 students, the youngest student was born in 1995 and the 
oldest in 1975. Let S be the number of students in the class who were born on 
exactly the same day. What is the probability that 4 ≤ S ≤ 32? (For simplicity, 
assume that the distribution of birthdays is uniform over the 7305 days in the two 
decade interval from 1975 to 1995.) 

Problem 21.11. 
A defendent in traffic court is trying to beat a speeding ticket on the grounds that 
—since virtually everybody speeds on the turnpike —the police have unconstitu­
tional discretion in giving tickets to anyone they choose. (By the way, we don’t 
recommend this defense :-) ) 

To support his argument, the defendent arranged to get a random sample of 
trips by 3,125 cars on the turnpike and found that 94% of them broke the speed 
limit at some point during their trip. He says that as a consequence of sampling 
theory (in particular, the Pairwise Independent Sampling Theorem), the court can 
be 95% confident that the actual percentage of all cars that were speeding is 94±4%. 

The judge observes that the actual number of car trips on the turnpike was 
never considered in making this estimate. He is skeptical that, whether there were 
a thousand, a million, or 100,000,000 car trips on the turnpike, sampling only 3,125 
is sufficient to be so confident. 

Suppose you were were the defendent. How would you explain to the judge 
why the number of randomly selected cars that have to be checked for speeding 
does not depend on the number of recorded trips? Remember that judges are not trained 
to understand formulas, so you have to provide an intuitive, nonquantitative ex­
planation. 

Problem 21.12. 
The proof of the Pairwise Independent Sampling Theorem 21.5.1 was given for 
a sequence R1, R2, . . . of pairwise independent random variables with the same 
mean and variance. 

The theorem generalizes straighforwardly to sequences of pairwise indepen­
dent random variables, possibly with different distributions, as long as all their 
variances are bounded by some constant. 

Theorem (Generalized Pairwise Independent Sampling). Let X1, X2, . . . be a se­
quence of pairwise independent random variables such that Var [Xi] ≤ b for some b ≥ 0 
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and all i ≥ 1. Let 

An ::= 
X1 + X2 + · · · + Xn 

, 
n 

µn ::= E [An] . 

Then for every � > 0, 
b 1

Pr {|An − µn| > �} ≤ 
�2 
· 
n

. (21.24) 

(a) Prove the Generalized Pairwise Independent Sampling Theorem. 

(b) Conclude that the following holds: 
Corollary (Generalized Weak Law of Large Numbers). For every � > 0, 

lim Pr {|An − µn| ≤ �} = 1. 
n→∞ 

Problem 21.13. 
An International Journal of Epidemiology has a policy that they will only publish 
the results of a drug trial when there were enough patients in the drug trial to be 
sure that the conclusions about the drug’s effectiveness hold at the 95% confidence 
level. The editors of the Journal reason that under this policy, their readership can 
be confident that at most 5% of the published studies will be mistaken. 

Later, the editors are astonished and embarrassed to learn that every one of the 
20 drug trial results they published during the year was wrong. This happened 
even though the editors and reviewers had carefully checked the submitted data, 
and every one of the trials was properly performed and reported in the published 
paper. 

The editors thought the probability of this was negligible (namely, (1/20)20 < 
10−25). Explain what’s wrong with their reasoning and how it could be that all 20 
published studies were wrong. 

Exam Problems 

Problem 21.14. 
Yesterday, the programmers at a local company wrote a large program. To estimate 
the fraction, b, of lines of code in this program that are buggy, the QA team will 
take a small sample of lines chosen randomly and independently (so it is possible, 
though unlikely, that the same line of code might be chosen more than once). For 
each line chosen, they can run tests that determine whether that line of code is 
buggy, after which they will use the fraction of buggy lines in their sample as their 
estimate of the fraction b. 

The company statistician can use estimates of a binomial distribution to calcu­
late a value, s, for a number of lines of code to sample which ensures that with 
97% confidence, the fraction of buggy lines in the sample will be within 0.006 of 
the actual fraction, b, of buggy lines in the program. 
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Mathematically, the program is an actual outcome that already happened. The 
sample is a random variable defined by the process for randomly choosing s lines 
from the program. The justification for the statistician’s confidence depends on 
some properties of the program and how the sample of s lines of code from the 
program are chosen. These properties are described in some of the statements 
below. Indicate which of these statements are true, and explain your answers. 

1. The probability that the ninth line of code in the program is buggy is b. 

2. The probability that the ninth line of code chosen for the sample is defective, 
is b. 

3. All lines of code in the program are equally likely to be the third line chosen 
in the sample. 

4. Given that the first line chosen for the sample is buggy, the probability that 
the second line chosen will also be buggy is greater than b. 

5. Given that the last line in the program is buggy, the probability that the next-
to-last line in the program will also be buggy is greater than b. 

6. The expectation of the indicator variable for the last line in the sample being 
buggy is b. 

7. Given that the first two lines of code selected in the sample are the same kind 
of statement —they might both be assignment statements, or both be condi­
tional statements, or both loop statements,. . . —the probability that the first 
line is buggy may be greater than b. 

8. There is zero probability that all the lines in the sample will be different. 
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