
Chapter 19 

Random Processes 

Random Walks are used to model situations in which an object moves in a sequence 
of steps in randomly chosen directions. For example in Physics, three-dimensional 
random walks are used to model Brownian motion and gas diffusion. In this chap­
ter we’ll examine two examples of random walks. First, we’ll model gambling as 
a simple 1-dimensional random walk —a walk along a straight line. Then we’ll 
explain how the Google search engine used random walks through the graph of 
world-wide web links to determine the relative importance of websites. 

19.1 Gamblers’ Ruin 

a Suppose a gambler starts with an initial stake of n dollars and makes a sequence 
of $1 bets. If he wins an individual bet, he gets his money back plus another $1. If 
he loses, he loses the $1. 

We can model this scenario as a random walk between integer points on the 
reall line. The position on the line at any time corresponds to the gambler’s cash-
on-hand or capital. Walking one step to the right (left) corresponds to winning 
(losing) a $1 bet and thereby increasing (decreasing) his capital by $1. The gambler 
plays until either he is bankrupt or increases his capital to a target amount of T 
dollars. If he reaches his target, then he is called an overall winner, and his profit, 
m, will be T − n dollars. If his capital reaches zero dollars before reaching his 
target, then we say that he is “ruined” or goes broke. We’ll assume that the gambler 
has the same probability, p, of winning each individual $1 bet and that the bets are 
mutually independent. We’d like to find the probability that the gambler wins. 

The gambler’s situation as he proceeds with his $1 bets is illustrated in Fig­
ure 19.1. The random walk has boundaries at 0 and T . If the random walk ever 
reaches either of these boundary values, then it terminates. 

In a fair game, the gambler is equally likely to win or lose each bet, that is p = 
1/2. The corresponding random walk is called unbiased. The gambler is more likely 
to win if p > 1/2 and less likely to win if p < 1/2; these random walks are called 
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Figure 19.1: This is a graph of the gambler’s capital versus time for one possible sequence 
of bet outcomes. At each time step, the graph goes up with probability p and down with 
probability 1 − p. The gambler continues betting until the graph reaches either 0 or T . 

biased. We want to determine the probability that the walk terminates at boundary 
T , namely, the probability that the gambler is a winner. We’ll do this by showing 
that the probability satisfies a simple linear recurrence and solving the recurrence, 
but before we derive the probability, let’s just look at what it turns out to be. 

Let’s begin by supposing the coin is fair, the gambler starts with 100 dollars, 
and he wants to double his money. That is, he plays until he goes broke or reaches 
a target of 200 dollars. Since he starts equidistant from his target and bankruptcy, 
it’s clear by symmetry that his probability of winning in this case is 1/2. 

We’ll show below that starting with n dollars and aiming for a target of T ≥ n 
dollars, the probability the gambler reaches his target before going broke is n/T . 
For example, suppose he want to win the same $100, but instead starts out with 
$500. Now his chances are pretty good: the probability of his making the 100 
dollars is 5/6. And if he started with one million dollars still aiming to win $100 
dollars he almost certain to win: the probability is 1M/(1M + 100) > .9999. 

So in the fair game, the larger the initial stake relative to the target, the higher 
the probability the gambler will win, which makes some intuitive sense. But note 
that although the gambler now wins nearly all the time, the game is still fair. When 
he wins, he only wins $100; when he loses, he loses big: $1M. So the gambler’s 
average win is actually zero dollars. 

Now suppose instead that the gambler chooses to play roulette in an American 
casino, always betting $1 on red. A roulette wheel has 18 black numbers, 18 red 
numbers, and 2 green numbers, designed so that each number is equally likely 
to appear. So this game is slightly biased against the gambler: the probability 
of winning a single bet is p = 18/38 ≈ 0.47. It’s the two green numbers that 
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slightly bias the bets and give the casino an edge. Still, the bets are almost fair, and 
you might expect that starting with $500, the gambler has a reasonable chance of 
winning $100 —the 5/6 probability of winning in the unbiased game surely gets 
reduced, but perhaps not too drastically. 

Not so! The gambler’s odds of winning $100 making one dollar bets against the 
“slightly” unfair roulette wheel are less than 1 in 37,000. If that seems surprising, 
listen to this: no matter how much money the gambler has to start —$5000, $50,000, 
$5 1012 —his odds are still less than 1 in 37,000 of winning a mere 100 dollars! · 

Moral: Don’t play! 
The theory of random walks is filled with such fascinating and counter-intuitive 

conclusions. 

19.1.1 A Recurrence for the Probability of Winning 

The probability the gambler wins is a function of his initial capital, n, his target, 
T ≥ n, and the probability, p, that he wins an individual one dollar bet. Let’s let p 
and T be fixed, and let wn be the gambler’s probabiliity of winning when his initial 
capital is n dollars. For example, w0 is the probability that the gambler will win 
given that he starts off broke and wT is the probability he will win if he starts off 
with his target amount, so clearly 

w0 = 0, (19.1) 
wT = 1. (19.2) 

Otherwise, the gambler starts with n dollars, where 0 < n < T . Consider the 
outcome of his first bet. The gambler wins the first bet with probability p. In this 
case, he is left with n + 1 dollars and becomes a winner with probability wn+1. On 
the other hand, he loses the first bet with probability q ::=1 − p. Now he is left with 
n−1 dollars and becomes a winner with probability wn−1. By the Total Probability 
Rule, he wins with probability wn = pwn+1 + qwn−1. Solving for wn+1 we have 

wn+1 = 
wn − rwn−1 (19.3) 
p 

where 
q 

r ::= . 
p 

This recurrence holds only for n + 1 ≤ T , but there’s no harm in using (19.3) to 
define wn+1 for all n + 1 > 1. Now, letting 

W (x) ::= w0 + w1x + w2x 2 + · · · 

be the generating function for the wn, we derive from (19.3) and (19.1) using our 
generating function methods that 

xW (x) = 
w1x

, (19.4)
(1 − x)(1 − rx) 



� � 

� � 

448 CHAPTER 19. RANDOM PROCESSES 

so if p =� q, then using partial fractions we can calculate that 

w1 1 1 
W (x) = 

r − 1 1 − rx 
− 

1 − x
, 

which implies 
nr

wn = w1 
− 1 

. (19.5) 
r − 1 

Now we can use (19.5) to solve for w1 by letting n = T to get 

r − 1 
w1 = . 

rT − 1 

Plugging this value of w1 into (19.5), we finally arrive at the solution: 

n 

wn = 
r

r
T 

− 1 
. (19.6)

− 1 

The expression (19.6) for the probability that the Gambler wins in the biased 
game is a little hard to interpret. There is a simpler upper bound which is nearly 
tight when the gambler’s starting capital is large and the game is biased against the 
gambler. Then both the numerator and denominator in the quotient in (19.6) are 
positive, and the quotient is less than one. This implies that 

n 

wn <
r

= r T −n , 
rT 

which proves: 

Corollary 19.1.1. In the Gambler’s Ruin game with probability p < 1/2 of winning each 
individual bet, with initial capital, n, and target, T , � �T −n 

Pr {the gambler is a winner} < p 
(19.7) 

q 

The amount T − n is called the Gambler’s intended profit. So the gambler gains 
his intended profit before going broke with probability at most p/q raised to the 
intended-profit power. Notice that this upper bound does not depend on the gam­
bler’s starting capital, but only on his intended profit. This has the amazing conse­
quence we announced above: no matter how much money he starts with, if he makes 
$1 bets on red in roulette aiming to win $100, the probability that he wins is less 
than 

18/38 
�100 9 

�100 1 
= < .

20/38 10 37, 648 

The bound (19.7) is exponential in the intended profit. So, for example, dou­
bling his intended profit will square his probability of winning. In particular, the 
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probability that the gambler’s stake goes up 200 dollars before he goes broke play­
ing roulette is at most � �21

(9/10)200 = ((9/10)100)2 = ,
37, 648 

which is about 1 in 70 billion. 
The solution (19.6) only applies to biased walks, but the method above works 

just as well in getting a formula for the unbiased case (except that the partial frac­
tions involve a repeated root). But it’s simpler settle the fair case simply by taking 
the limit as r approaches 1 of (19.6). By L’Hopital’s Rule this limit is n/T , as we 
claimed above. 

19.1.2 Intuition 

Why is the gambler so unlikely to make money when the game is slightly biased 
against him? Intuitively, there are two forces at work. First, the gambler’s capi­
tal has random upward and downward swings due to runs of good and bad luck. 
Second, the gambler’s capital will have a steady, downward drift, because the neg­
ative bias means an average loss of a few cents on each $1 bet. The situation is 
shown in Figure 19.2. 

Our intuition is that if the gambler starts with, say, a billion dollars, then he is 
sure to play for a very long time, so at some point there should be a lucky, upward 
swing that puts him $100 ahead. The problem is that his capital is steadily drifting 
downward. If the gambler does not have a lucky, upward swing early on, then he is 
doomed. After his capital drifts downward a few hundred dollars, he needs a huge 
upward swing to save himself. And such a huge swing is extremely improbable. 
As a rule of thumb, drift dominates swings in the long term. 

19.1.3 Problems 

Homework Problems 

Problem 19.1. 
A drunken sailor wanders along main street, which conveniently consists of the 
points along the x axis with integral coordinates. In each step, the sailor moves 
one unit left or right along the x axis. A particular path taken by the sailor can be 
described by a sequence of “left” and “right” steps. For example, �left,left,right�
describes the walk that goes left twice then goes right. 

We model this scenario with a random walk graph whose vertices are the in­
tegers and with edges going in each direction between consecutive integers. All 
edges are labelled 1/2. 

The sailor begins his random walk at the origin. This is described by an initial 
distribution which labels the origin with probability 1 and all other vertices with 
probability 0. After one step, the sailor is equally likely to be at location 1 or −1, 
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T = n + m

time

gambler’s
capital

n

downward
drift

swing
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(too late!)

Figure 19.2: In an unfair game, the gambler’s capital swings randomly up and down, but 
steadily drifts downward. If the gambler does not have a winning swing early on, then his 
capital drifts downward, and later upward swings are insufficient to make him a winner. 

so the distribution after one step gives label 1/2 to the vertices 1 and −1 and labels 
all other vertices with probability 0. 
(a) Give the distributions after the 2nd, 3rd, and 4th step by filling in the table 

of probabilities below, where omitted entries are 0. For each row, write all the 
nonzero entries so they have the same denominator. 

initially 
after 1 step 
after 2 steps 
after 3 steps 
after 4 steps 

location 
-4 -3 -2 -1 0 1 2 3 4 

1 
1/2 0 1/2 

? ? ? ? ? 
? ? ? ? ? ? ? 

? ? ? ? ? ? ? ? ? 

(b) 

1. What is the final location of a t-step path that moves right exactly i times? 

2. How many different paths are there that end at that location? 

3. What is the probability that the sailor ends at this location? 

(c) Let L be the random variable giving the sailor’s location after t steps, and let 
B ::=(L+t)/2. Use the answer to part (b) to show that B has an unbiased binomial 
density function. 
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(d) Again let L be the random variable giving the sailor’s location after t steps, 
where t is even. Show that 

√
t 1

Pr |L| < 
2 

< 
2 

. 

So there is a better than even chance that the sailor ends up at least 
√

t/2 steps from 
where he started. 

Hint: Work in terms of B. Then you can use an estimate that bounds the binomial 
distribution. Alternatively, observe that the origin is the most likely final location 
and then use the asymptotic estimate 

2 
.Pr {L = 0} = Pr {B = t/2} ∼ 

πt 

19.2 Random Walks on Graphs 

The hyperlink structure of the World Wide Web can be described as a digraph. The 
vertices are the web pages with a directed edge from vertex x to vertex y if x has 
a link to y. For example, in the following graph the vertices x1, . . . , xn correspond 
to web pages and xi → xj is a directed edge when page xi contains a hyperlink to 
page xj . 

x1

x3 x4

x7

x6

x2
x5

The web graph is an enormous graph with many billions and probably even 
trillions of vertices. At first glance, this graph wouldn’t seem to be very inter­
esting. But in 1995, two students at Stanford, Larry Page and indexBrin, Sergey 
Sergey Brin realized that the structure of this graph could be very useful in build­
ing a search engine. Traditional document searching programs had been around 
for a long time and they worked in a fairly straightforward way. Basically, you 
would enter some search terms and the searching program would return all doc­
uments containing those terms. A relevance score might also be returned for each 
document based on the frequency or position that the search terms appeared in 
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the document. For example, if the search term appeared in the title or appeared 
100 times in a document, that document would get a higher score. So if an author 
wanted a document to get a higher score for certain keywords, he would put the 
keywords in the title and make it appear in lots of places. You can even see this 
today with some bogus web sites. 

This approach works fine if you only have a few documents that match a search 
term. But on the web, there are billions of documents and millions of matches to a 
typical search. 

For example, a few years ago a search on Google for “math for computer sci­
ence notes” gave 378,000 hits! How does Google decide which 10 or 20 to show 
first? It wouldn’t be smart to pick a page that gets a high keyword score because it 
has “math math . . . math” across the front of the document. 

One way to get placed high on the list is to pay Google an advertising fees 
—and Google gets an enormous revenue stream from these fees. Of course an 
early listing is worth a fee only if an advertiser’s target audience is attracted to the 
listing. But an audience does get attracted to Google listings because its ranking 
method is really good at determining the most relevant web pages. For example, 
Google demonstrated its accuracy in our case by giving first rank to the Fall 2002 
open courseware page for 6.042 :-) . So how did Google know to pick 6.042 to be 
first out of 378, 000? 

Well back in 1995, Larry and Sergey got the idea to allow the digraph structure 
of the web to determine which pages are likely to be the most important. 

19.2.1 A First Crack at Page Rank 

Looking at the web graph, any idea which vertex/page might be the best to rank 
1st? Assume that all the pages match the search terms for now. Well, intuitively, 
we should choose x2, since lots of other pages point to it. This leads us to their first 
idea: try defining the page rank of x to be the number of links pointing to x, that 
is, indegree(x). The idea is to think of web pages as voting for the most important 
page —the more votes, the better rank. 

Of course, there are some problems with this idea. Suppose you wanted to have 
your page get a high ranking. One thing you could do is to create lots of dummy 
pages with links to your page. 

+n



� 

453 19.2. RANDOM WALKS ON GRAPHS 

There is another problem —a page could become unfairly influential by having 
lots of links to other pages it wanted to hype. 

+1

+1

+1

+1

+1

So this strategy for high ranking would amount to, “vote early, vote often,” 
which is no good if you want to build a search engine that’s worth paying fees for. 
So, admittedly, their original idea was not so great. It was better than nothing, but 
certainly not worth billions of dollars. 

19.2.2 Random Walk on the Web Graph 

But then Sergey and Larry thought some more and came up with a couple of im­
provements. Instead of just counting the indegree of a vertex, they considered the 
probability of being at each page after a long random walk on the web graph. In 
particular, they decided to model a user’s web experience as following each link 
on a page with uniform probability. That is, they assigned each edge x y of the 
web graph with a probability conditioned on being on page x: 

→ 

1
Pr {follow link x → y | at page x} ::= 

outdegree(x) 
. 

The user experience is then just a random walk on the web graph. 
For example, if the user is at page x, and there are three links from page x, then 

each link is followed with probability 1/3. 
We can also compute the probability of arriving at a particular page, y, by sum­

ming over all edges pointing to y. We thus have 

Pr {go to y} = Pr {follow link x → y | at page x} · Pr {at page x}
edges x y→

= 
� Pr {at x}

(19.8)
outdegree(x)

edges x y→

For example, in our web graph, we have 

Pr {go to x4} = 
Pr {at x7} + 

Pr {at x2} 
.

2 1 
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One can think of this equation as x7 sending half its probability to x2 and the other 
half to x4. The page x2 sends all of its probability to x4. 

There’s one aspect of the web graph described thus far that doesn’t mesh with 
the user experience —some pages have no hyperlinks out. Under the current 
model, the user cannot escape these pages. In reality, however, the user doesn’t 
fall off the end of the web into a void of nothingness. Instead, he restarts his web 
journey. 

To model this aspect of the web, Sergey and Larry added a supervertex to the 
web graph and had every page with no hyperlinks point to it. Moreover, the su­
pervertex points to every other vertex in the graph, allowing you to restart the 
walk from a random place. For example, below left is a graph and below right is 
the same graph after adding the supervertex xN +1. 

x1

x2

x3

1
1/2

1/2

xN+1

x1

x2

x3

The addition of the supervertex also removes the possibility that the value 
1/outdegree(x) might involve a division by zero. 

19.2.3 Stationary Distribution & Page Rank 

The basic idea of page rank is just a stationary distribution over the web graph, so 
let’s define a stationary distribution. 

Suppose each vertex is assigned a probability that corresponds, intuitively, to 
the likelihood that a random walker is at that vertex at a randomly chosen time. 
We assume that the walk never leaves the vertices in the graph, so we require that 

Pr {at x} = 1. (19.9) 
vertices x 

Definition 19.2.1. An assignment of probabililties to vertices in a digraph is a sta­
tionary distribution if for all vertices x 

Pr {at x} = Pr {go to x at next step} 

Sergey and Larry defined their page ranks to be a stationary distribution. They 
did this by solving the following system of linear equations: find a nonnegative 
number, PR(x), for each vertex, x, such that 
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� PR(y)
PR(x) = , (19.10)

outdegree(y)
edges y x→

corresponding to the intuitive equations given in (19.8). These numbers must also 
satisfy the additional constraint corresponding to (19.9): 

PR(x) = 1. (19.11) 
vertices x 

So if there are n vertices, then equations (19.10) and (19.11) provide a system 
of n + 1 linear equations in the n variables, PR(x). Note that constraint (19.11) 
is needed because the remaining constraints (19.10) could be satisfied by letting 
PR(x) ::= 0 for all x, which is useless. 

Sergey and Larry were smart fellows, and they set up their page rank algorithm 
so it would always have a meaningful solution. Their addition of a supervertex 
ensures there is always a unique stationary distribution. Moreover, starting from 
any vertex and taking a sufficiently long random walk on the graph, the probability 
of being at each page will get closer and closer to the stationary distribution. Note 
that general digraphs without supervertices may have neither of these properties: 
there may not be a unique stationary distribution, and even when there is, there 
may be starting points from which the probabilities of positions during a random 
walk do not converge to the stationary distribution. 

Now just keeping track of the digraph whose vertices are billions of web pages 
is a daunting task. That’s why Google is building power plants. Indeed, Larry 
and Sergey named their system Google after the number 10100 —which called a 
“googol” —to reflect the fact that the web graph is so enormous. 

Anyway, now you can see how 6.042 ranked first out of 378,000 matches. Lots 
of other universities used our notes and presumably have links to the 6.042 open 
courseware site, and the university sites themselves are legitimate, which ulti­
mately leads to 6.042 getting a high page rank in the web graph. 

19.2.4 Problems 

Class Problems 

Problem 19.2. 
Consider the following random-walk graph: 

x y

1

1
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(a) Find a stationary distribution. 

(b) If you start at node x and take a (long) random walk, does the distribution 
over nodes ever get close to the stationary distribution? Explain. 

Consider the following random-walk graph: 

w z

1

0.9

0.1

(c) Find a stationary distribution. 

(d) If you start at node w and take a (long) random walk, does the distribution 
over nodes ever get close to the stationary distribution? We don’t want you to 
prove anything here, just write out a few steps and see what’s happening. 

Consider the following random-walk graph: 

a b1 c

1/2

1/2

1/2
1d

1/2

(e) Describe the stationary distributions for this graph. 

(f) If you start at node b and take a long random walk, the probability you are at 
node d will be close to what fraction? Explain. 

Homework Problems 

Problem 19.3. 
A digraph is strongly connected iff there is a directed path between every pair of 
distinct vertices. In this problem we consider a finite random walk graph that is 
strongly connected. 
(a) Let d1 and d2 be distinct distributions for the graph, and define the maximum 

dilation, γ, of d1 over d2 to be 

d1(x)
γ ::= max 

x∈V d2(x) 
. 

Call a vertex, x, dilated if d1(x)/d2(x) = γ. Show that there is an edge, y z, from →
an undilated vertex y to a dilated vertex, z. Hint: Choose any dilated vertex, x, and 
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consider the set, D, of dilated vertices connected to x by a directed path (going to 
x) that only uses dilated vertices. Explain why D =� V , and then use the fact that 
the graph is strongly connected. 

(b) Prove that the graph has at most one stationary distribution. (There always is 
a stationary distribution, but we’re not asking you prove this.) Hint: Let d1 be a 
stationary distribution and d2 be a different distribution. Let z be the vertex from 
part (a). Show that starting from d2, the probability of z changes at the next step. 
That is, d�2(z) =� d2(z). 

Exam Problems 

Problem 19.4. 
For which of the following graphs is the uniform distribution over nodes a station­
ary distribution? The edges are labeled with transition probabilities. Explain your 
reasoning. 

0.5

0.5

0.50.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

0.5

0.5

1
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