
Chapter 16 

Counting 

16.1 Why Count? 

Are there two different subsets of the ninety 25-digit numbers shown below that 
have the same sum —for example, maybe the sum of the numbers in the first col­
umn is equal to the sum of the numbers in the second column? 

0020480135385502964448038 
5763257331083479647409398 
0489445991866915676240992 
5800949123548989122628663 
1082662032430379651370981 
6042900801199280218026001 
1178480894769706178994993 
6116171789137737896701405 
1253127351683239693851327 
6144868973001582369723512 
1301505129234077811069011 
6247314593851169234746152 
1311567111143866433882194 
6814428944266874963488274 
1470029452721203587686214 
6870852945543886849147881 
1578271047286257499433886 
6914955508120950093732397 
1638243921852176243192354 
6949632451365987152423541 
1763580219131985963102365 
7128211143613619828415650 
1826227795601842231029694 
7173920083651862307925394 
1843971862675102037201420 
7215654874211755676220587 
2396951193722134526177237 
7256932847164391040233050 
2781394568268599801096354 
7332822657075235431620317 
2796605196713610405408019 
7426441829541573444964139 
2931016394761975263190347 
7632198126531809327186321 
2933458058294405155197296 
7712154432211912882310511 
3075514410490975920315348 

3171004832173501394113017 
8247331000042995311646021 
3208234421597368647019265 
8496243997123475922766310 
3437254656355157864869113 
8518399140676002660747477 
3574883393058653923711365 
8543691283470191452333763 
3644909946040480189969149 
8675309258374137092461352 
3790044132737084094417246 
8694321112363996867296665 
3870332127437971355322815 
8772321203608477245851154 
4080505804577801451363100 
8791422161722582546341091 
4167283461025702348124920 
9062628024592126283973285 
4235996831123777788211249 
9137845566925526349897794 
4670939445749439042111220 
9153762966803189291934419 
4815379351865384279613427 
9270880194077636406984249 
4837052948212922604442190 
9324301480722103490379204 
5106389423855018550671530 
9436090832146695147140581 
5142368192004769218069910 
9475308159734538249013238 
5181234096130144084041856 
9492376623917486974923202 
5198267398125617994391348 
9511972558779880288252979 
5317592940316231219758372 
9602413424619187112552264 
5384358126771794128356947 
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7858918664240262356610010 9631217114906129219461111 
8149436716871371161932035 3157693105325111284321993 
3111474985252793452860017 5439211712248901995423441 
7898156786763212963178679 9908189853102753335981319 
3145621587936120118438701 5610379826092838192760458 
8147591017037573337848616 9913237476341764299813987 
3148901255628881103198549 5632317555465228677676044 
5692168374637019617423712 8176063831682536571306791 

Finding two subsets with the same sum may seem like an silly puzzle, but 
solving problems like this turns out to be useful, for example in finding good ways 
to fit packages into shipping containers and in decoding secret messages. 

The answer to the question turns out to be “yes.” Of course this would be easy 
to confirm just by showing two subsets with the same sum, but that turns out to be 
kind of hard to do. So before we put a lot of effort into finding such a pair, it would 
be nice to be sure there were some. Fortunately, it is very easy to see why there is 
such a pair —or at least it will be easy once we have developed a few simple rules 
for counting things. 

The Contest to Find Two Sets with the Same Sum 

One term, Eric Lehman, a 6.042 instructor who contributed to many parts of this 
book, offered a $100 prize for being the first 6.042 student to actually find two 
different subsets of the above ninety 25-digit numbers that have the same sum. 
Eric didn’t expect to have to pay off this bet, but he underestimated the ingenuity 
and initiative of 6.042 students. 

One computer science major wrote a program that cleverly searched only among 
a reasonably small set of “plausible” sets, sorted them by their sums, and actually 
found a couple with the same sum. He won the prize. A few days later, a math 
major figured out how to reformulate the sum problem as a “lattice basis reduc­
tion” problem; then he found a software package implementing an efficient basis 
reduction procedure, and using it, he very quickly found lots of pairs of subsets 
with the same sum. He didn’t win the prize, but he got a standing ovation from 
the class —staff included. 

Counting seems easy enough: 1, 2, 3, 4, etc. This direct approach works well for 
counting simple things —like your toes —and may be the only approach for ex­
tremely complicated things with no identifiable structure. However, subtler meth­
ods can help you count many things in the vast middle ground, such as: 

•	 The number of different ways to select a dozen doughnuts when there are 
five varieties available. 

•	 The number of 16-bit numbers with exactly 4 ones. 
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Counting is useful in computer science for several reasons: 

•	 Determining the time and storage required to solve a computational problem 
—a central objective in computer science —often comes down to solving a 
counting problem. 

•	 Counting is the basis of probability theory, which plays a central role in all 
sciences, including computer science. 

•	 Two remarkable proof techniques, the “pigeonhole principle” and “combi­
natorial proof,” rely on counting. These lead to a variety of interesting and 
useful insights. 

We’re going to present a lot of rules for counting. These rules are actually the­
orems, but most of them are pretty obvious anyway, so we’re not going to focus 
on proving them. Our objective is to teach you simple counting as a practical skill, 
like integration. 

16.2 Counting One Thing by Counting Another 

How do you count the number of people in a crowded room? You could count 
heads, since for each person there is exactly one head. Alternatively, you could 
count ears and divide by two. Of course, you might have to adjust the calculation 
if someone lost an ear in a pirate raid or someone was born with three ears. The 
point here is that you can often count one thing by counting another, though some 
fudge factors may be required. 

In more formal terms, every counting problem comes down to determining the 
size of some set. The size or cardinality of a finite set, S, is the number of elements 
in it and is denoted |S|. In these terms, we’re claiming that we can often find the 
size of one set by finding the size of a related set. We’ve already seen a general 
statement of this idea in the Mapping Rule of Lemma 4.8.2. 

16.2.1 The Bijection Rule 

We’ve already implicitly used the Bijection Rule of Lemma 3 a lot. For example, 
when we studied Stable Marriage and Bipartite Matching, we assumed the obvious 
fact that if we can pair up all the girls at a dance with all the boys, then there must 
be an equal number of each. If we needed to be explicit about using the Bijection 
Rule, we could say that A was the set of boys, B was the set of girls, and the 
bijection between them was how they were paired. 

The Bijection Rule acts as a magnifier of counting ability; if you figure out the 
size of one set, then you can immediately determine the sizes of many other sets 
via bijections. For example, let’s return to two sets mentioned earlier: 

A = all ways to select a dozen doughnuts when five varieties are available 
B = all 16-bit sequences with exactly 4 ones 
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Let’s consider a particular element of set A: 

0 0 0 0 0 0 0 0 0 0 0 0���� ���� � �� � ���� ���� 
chocolate lemon-filled sugar glazed plain 

We’ve depicted each doughnut with a 0 and left a gap between the different vari­
eties. Thus, the selection above contains two chocolate doughnuts, no lemon-filled, 
six sugar, two glazed, and two plain. Now let’s put a 1 into each of the four gaps: 

0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0���� ���� � �� � ���� ���� 
chocolate lemon-filled sugar glazed plain 

We’ve just formed a 16-bit number with exactly 4 ones— an element of B! 
This example suggests a bijection from set A to set B: map a dozen doughnuts 

consisting of: 

c chocolate, l lemon-filled, s sugar, g glazed, and p plain 

to the sequence: 

0 . . . 0 1 0 . . . 0 1 0 . . . 0 1 0 . . . 0 1 0 . . . 0� �� � � �� � � �� � � �� � � �� � 
c l s g p 

The resulting sequence always has 16 bits and exactly 4 ones, and thus is an 
element of B. Moreover, the mapping is a bijection; every such bit sequence is 
mapped to by exactly one order of a dozen doughnuts. Therefore, |A| = |B| by the 
Bijection Rule! 

This demonstrates the magnifying power of the bijection rule. We managed 
to prove that two very different sets are actually the same size— even though we 
don’t know exactly how big either one is. But as soon as we figure out the size of 
one set, we’ll immediately know the size of the other. 

This particular bijection might seem frighteningly ingenious if you’ve not seen 
it before. But you’ll use essentially this same argument over and over, and soon 
you’ll consider it routine. 

16.2.2 Counting Sequences 

The Bijection Rule lets us count one thing by counting another. This suggests a 
general strategy: get really good at counting just a few things and then use bijec­
tions to count everything else. This is the strategy we’ll follow. In particular, we’ll 
get really good at counting sequences. When we want to determine the size of some 
other set T , we’ll find a bijection from T to a set of sequences S. Then we’ll use our 
super-ninja sequence-counting skills to determine |S|, which immediately gives us 
|T |. We’ll need to hone this idea somewhat as we go along, but that’s pretty much 
the plan! 
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16.2.3 The Sum Rule 

Linus allocates his big sister Lucy a quota of 20 crabby days, 40 irritable days, and 
60 generally surly days. On how many days can Lucy be out-of-sorts one way 
or another? Let set C be her crabby days, I be her irritable days, and S be the 
generally surly. In these terms, the answer to the question is |C ∪ I ∪ S|. Now 
assuming that she is permitted at most one bad quality each day, the size of this 
union of sets is given by the Sum Rule: 

Rule 1 (Sum Rule). If A1, A2, . . . , An are disjoint sets, then: 

|A1 ∪ A2 ∪ . . . ∪ An| = |A1| + |A2| + . . . + |An| 

Thus, according to Linus’ budget, Lucy can be out-of-sorts for: 

|C ∪ I ∪ S| = |C| + |I| + |S|
= 20 + 40 + 60 

= 120 days 

Notice that the Sum Rule holds only for a union of disjoint sets. Finding the 
size of a union of intersecting sets is a more complicated problem that we’ll take 
up later. 

16.2.4 The Product Rule 

The Product Rule gives the size of a product of sets. Recall that if P1, P2, . . . , Pn are 
sets, then 

P1 × P2 × . . . × Pn 

is the set of all sequences whose first term is drawn from P1, second term is drawn 
from P2 and so forth. 

Rule 2 (Product Rule). If P1, P2, . . . Pn are sets, then: 

|P1 × P2 × . . . × Pn| = |P1| · |P2| · · · |Pn| 

Unlike the sum rule, the product rule does not require the sets P1, . . . , Pn to be 
disjoint. For example, suppose a daily diet consists of a breakfast selected from set 
B, a lunch from set L, and a dinner from set D: 

B = {pancakes, bacon and eggs, bagel, Doritos}

L = {burger and fries, garden salad, Doritos}

D = {macaroni, pizza, frozen burrito, pasta, Doritos}


Then B ×L×D is the set of all possible daily diets. Here are some sample elements:


(pancakes, burger and fries, pizza)

(bacon and eggs, garden salad, pasta)


(Doritos, Doritos, frozen burrito)
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The Product Rule tells us how many different daily diets are possible: 

|B × L × D| = |B| · |L| · |D|
= 4 3 5· · 
= 60 

16.2.5 Putting Rules Together 

Few counting problems can be solved with a single rule. More often, a solution 
is a flurry of sums, products, bijections, and other methods. Let’s look at some 
examples that bring more than one rule into play. 

Counting Passwords 

The sum and product rules together are useful for solving problems involving 
passwords, telephone numbers, and license plates. For example, on a certain com­
puter system, a valid password is a sequence of between six and eight symbols. 
The first symbol must be a letter (which can be lowercase or uppercase), and the 
remaining symbols must be either letters or digits. How many different passwords 
are possible? 

Let’s define two sets, corresponding to valid symbols in the first and subse­
quent positions in the password. 

F = {a, b, . . . , z, A, B, . . . , Z}

S = {a, b, . . . , z, A, B, . . . , Z, 0, 1, . . . , 9}


In these terms, the set of all possible passwords is: 

(F × S5) ∪ (F × S6) ∪ (F × S7) 

Thus, the length-six passwords are in set F ×S5, the length-seven passwords are in 
F × S6, and the length-eight passwords are in F × S7. Since these sets are disjoint, 
we can apply the Sum Rule and count the total number of possible passwords as 
follows: 

(F × S5) ∪ (F × S6) ∪ (F × S7) = F × S5 + F × S6 + F × S7 Sum Rule 

= |F | · |S| 5 + |F | · |S| 6 + |F | · |S| 7 Product Rule 

= 52 625 + 52 626 + 52 627 · · · 
≈ 1.8 1014 different passwords · 

Subsets of an n-element Set 

How many different subsets of an n-element set X are there? For example, the set 
X = {x1, x2, x3} has eight different subsets: 

∅ {x1} {x2} {x1, x2}
{x3} {x1, x3} {x2, x3} {x1, x2, x3} 
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There is a natural bijection from subsets of X to n-bit sequences. Let x1, x2, . . . , xn 

be the elements of X . Then a particular subset of X maps to the sequence (b1, . . . , bn) 
where bi = 1 if and only if xi is in that subset. For example, if n = 10, then the 
subset {x2, x3, x5, x7, x10} maps to a 10-bit sequence as follows: 

subset: { x2, x3, x5, x7, x10 }
sequence: ( 0, 1, 1, 0, 1, 0, 1, 0, 0, 1 ) 

We just used a bijection to transform the original problem into a question about 
sequences —exactly according to plan! Now if we answer the sequence question, 
then we’ve solved our original problem as well. 

But how many different n-bit sequences are there? For example, there are 8 
different 3-bit sequences: 

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) 
(1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1) 

Well, we can write the set of all n-bit sequences as a product of sets: 

{0, 1} × {0, 1} × . . . × {0, 1} = {0, 1} n 

n terms 

Then Product Rule gives the answer: 

|{0, 1} n | = |{0, 1}| n 

= 2n 

This means that the number of subsets of an n-element set X is also 2n . We’ll 
put this answer to use shortly. 

16.2.6 Problems 

Practice Problems 

Problem 16.1. 
How many ways are there to select k out of n books on a shelf so that there are 
always at least 3 unselected books between selected books? (Assume n is large 
enough for this to be possible.) 

Class Problems 

Problem 16.2. 
A license plate consists of either: 

• 3 letters followed by 3 digits (standard plate) 

• 5 letters (vanity plate) 
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• 2 characters – letters or numbers (big shot plate) 

Let L be the set of all possible license plates. 
(a) Express L in terms of 

A = {A, B, C, . . . , Z} 
D = {0, 1, 2, . . . , 9} 

using unions (∪) and set products (×). 

(b) Compute |L|, the number of different license plates, using the sum and prod­
uct rules. 

Problem 16.3. (a) How many of the billion numbers in the range from 1 to 109 

contain the digit 1? (Hint: How many don’t?) 

(b) There are 20 books arranged in a row on a shelf. Describe a bijection between 
ways of choosing 6 of these books so that no two adjacent books are selected and 
15-bit strings with exactly 6 ones. 

Problem 16.4. 

(a) Let Sn,k be the possible nonnegative integer solutions to the inequality 

x1 + x2 + + xk ≤ n. (16.1)· · · 

That is � � 
Sn,k ::= (x1, x2, . . . , xk) ∈ Nk | (16.1) is true . 

Describe a bijection between Sn,k and the set of binary strings with n zeroes and k 
ones. 

(b) Let Ln,k be the length k weakly increasing sequences of nonnegative integers 
≤ n. That is 

Ln,k ::= (y1, y2, . . . , yk) ∈ Nk | y1 ≤ y2 ≤ · · · ≤ yk ≤ n . 

Describe a bijection between Ln,k and Sn,k. 

Problem 16.5. 
An n-vertex numbered tree is a tree whose vertex set is {1, 2, . . . , n} for some n > 2. 
We define the code of the numbered tree to be a sequence of n − 2 integers from 1 
to n obtained by the following recursive process: 



16.2. COUNTING ONE THING BY COUNTING ANOTHER 339 

If there are more than two vertices left, write down the father of the largest leafa , 
delete this leaf, and continue this process on the resulting smaller tree. 

If there are only two vertices left, then stop —the code is complete. 

aThe necessarily unique node adjacent to a leaf is called its father. 

For example, the codes of a couple of numbered trees are shown in the Fig­
ure 16.2. 

Figure 16.1: 

(a) Describe a procedure for reconstructing a numbered tree from its code. 

(b) Conclude there is a bijection between the n-vertex numbered trees and {1, . . . , n} n−2 , 
and state how many n-vertex numbered trees there are. 

Tree

1 2 3 4 5

1

2 6

5 4

73

4 3 2

6 5 6 2 2

Tree Code

Coding Numbered Trees

Image by MIT OpenCourseWare.
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Homework Problems 

Problem 16.6. 
Answer the following questions with a number or a simple formula involving fac­
torials and binomial coefficients. Briefly explain your answers. 
(a) How many ways are there to order the 26 letters of the alphabet so that no two 

of the vowels a, e, i, o, u appear consecutively and the last letter in the ordering 
is not a vowel? 

Hint: Every vowel appears to the left of a consonant. 

(b) How many ways are there to order the 26 letters of the alphabet so that there 
are at least two consonants immediately following each vowel? 

(c) In how many different ways can 2n students be paired up? 

(d) Two n-digit sequences of digits 0,1,. . . ,9 are said to be of the same type if the 
digits of one are a permutation of the digits of the other. For n = 8, for example, 
the sequences 03088929 and 00238899 are the same type. How many types of 
n-digit integers are there? 

Problem 16.7. 
In a standard 52-card deck, each card has one of thirteen ranks in the set, R, and 
one of four suits in the set, S, where 

R ::= {A, 2, . . . , 10, J,Q, K} , 
S ::= {♣, ♦, ♥, ♠} . 

A 5-card hand is a set of five distinct cards from the deck. 
For each part describe a bijection between a set that can easily be counted using 

the Product and Sum Rules of Ch. 16.2, and the set of hands matching the specifi­
cation. Give bijections, not numerical answers. 

For instance, consider the set of 5-card hands containing all 4 suits. Each such 
hand must have 2 cards of one suit. We can describe a bijection between such 
hands and the set S × R2 × R3 where R2 is the set of two-element subsets of R. 
Namely, an element 

(s, {r1, r2} , (r3, r4, r5)) ∈ S × R2 × R3 

indicates 

1. the repeated suit, s ∈ S, 

2. the set, {r1, r2} ∈ R2, of ranks of the cards of suit, s, and 

3. the ranks (r3, r4, r5) of remaining three cards, listed in increasing suit order 
where ♣ � ♦ � ♥ � ♠. 
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For example, 

(♣, {10, A} , (J, J, 2)) ←→ {A♣, 10♣, J♦, J♥, 2♠} . 

(a) A single pair of the same rank (no 3-of-a-kind, 4-of-a-kind, or second pair). 

(b) Three or more aces. 

16.3 The Pigeonhole Principle 

Here is an old puzzle: 

A drawer in a dark room contains red socks, green socks, and blue 
socks. How many socks must you withdraw to be sure that you have a 
matching pair? 

For example, picking out three socks is not enough; you might end up with one 
red, one green, and one blue. The solution relies on the Pigeonhole Principle, which 
is a friendly name for the contrapositive of the injective case 2 of the Mapping Rule 
of Lemma 4.8.2. Let’s write it down: 

If |X| > |Y |, then no total function1 f : X → Y is injective. 

And now rewrite it again to eliminate the word “injective.” 

Rule 3 (Pigeonhole Principle). If |X| > |Y |, then for every total function f : X → Y , 
there exist two different elements of X that are mapped to the same element of Y . 

What this abstract mathematical statement has to do with selecting footwear 
under poor lighting conditions is maybe not obvious. However, let A be the set 
of socks you pick out, let B be the set of colors available, and let f map each sock 
to its color. The Pigeonhole Principle says that if |A| > |B| = 3, then at least two 
elements of A (that is, at least two socks) must be mapped to the same element of 
B (that is, the same color). For example, one possible mapping of four socks to 
three colors is shown below. 

A f B 

1st sock red� 

2nd sock 

3rd sock 

green 

blue 

� 

�
�
�
�
��

4th sock �

1This Mapping Rule actually applies even if f is a total injective relation. 
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Therefore, four socks are enough to ensure a matched pair. 
Not surprisingly, the pigeonhole principle is often described in terms of pi­

geons: 

If there are more pigeons than holes they occupy, then at least two pigeons 
must be in the same hole. 

In this case, the pigeons form set A, the pigeonholes are set B, and f describes 
which hole each pigeon flies into. 

Mathematicians have come up with many ingenious applications for the pi­
geonhole principle. If there were a cookbook procedure for generating such argu­
ments, we’d give it to you. Unfortunately, there isn’t one. One helpful tip, though: 
when you try to solve a problem with the pigeonhole principle, the key is to clearly 
identify three things: 

1. The set A (the pigeons). 

2. The set B (the pigeonholes). 

3. The function f (the rule for assigning pigeons to pigeonholes). 

16.3.1 Hairs on Heads 

There are a number of generalizations of the pigeonhole principle. For example: 

Rule 4 (Generalized Pigeonhole Principle). If |X| > k · |Y |, then every total function 
f : X Y maps at least k + 1 different elements of X to the same element of Y .→ 

For example, if you pick two people at random, surely they are extremely un­
likely to have exactly the same number of hairs on their heads. However, in the 
remarkable city of Boston, Massachusetts there are actually three people who have 
exactly the same number of hairs! Of course, there are many bald people in Boston, 
and they all have zero hairs. But we’re talking about non-bald people; say a person 
is non-bald if they have at least ten thousand hairs on their head. 

Boston has about 500,000 non-bald people, and the number of hairs on a per­
son’s head is at most 200,000. Let A be the set of non-bald people in Boston, let 
B = {10, 000, 10, 001, . . . , 200, 000}, and let f map a person to the number of hairs 
on his or her head. Since |A| > 2 |B|, the Generalized Pigeonhole Principle implies 
that at least three people have exactly the same number of hairs. We don’t know 
who they are, but we know they exist! 

16.3.2 Subsets with the Same Sum 

We asserted that two different subsets of the ninety 25-digit numbers listed on the 
first page have the same sum. This actually follows from the Pigeonhole Principle. 
Let A be the collection of all subsets of the 90 numbers in the list. Now the sum of 
any subset of numbers is at most 90 1025, since there are only 90 numbers and every ·
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25-digit number is less than 1025. So let B be the set of integers 0, 1, . . . , 90 1025 ,· 
and let f map each subset of numbers (in A) to its sum (in B). 

We proved that an n-element set has 2n different subsets. Therefore: 

|A| = 290 

≥ 1.237 × 1027 

On the other hand: 

|B| = 90 · 1025 + 1 

≤ 0.901 × 1027 

Both quantities are enormous, but |A| is a bit greater than |B|. This means that f 
maps at least two elements of A to the same element of B. In other words, by the 
Pigeonhole Principle, two different subsets must have the same sum! 

Notice that this proof gives no indication which two sets of numbers have the 
same sum. This frustrating variety of argument is called a nonconstructive proof. 

Sets with Distinct Subset Sums 

How can we construct a set of n positive integers such that all its subsets have 
distinct sums? One way is to use powers of two: 

{1, 2, 4, 8, 16} 

This approach is so natural that one suspects all other such sets must involve larger 
numbers. (For example, we could safely replace 16 by 17, but not by 15.) Remark­
ably, there are examples involving smaller numbers. Here is one: 

{6, 9, 11, 12, 13} 

One of the top mathematicans of the Twentieth Century, Paul Erdős, conjectured 
in 1931 that there are no such sets involving significantly smaller numbers. More 
precisely, he conjectured that the largest number must be > c2n for some constant 
c > 0. He offered $500 to anyone who could prove or disprove his conjecture, but 
the problem remains unsolved. 

16.3.3 Problems 

Class Problems 

Problem 16.8. 
Solve the following problems using the pigeonhole principle. For each problem, 
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try to identify the pigeons, the pigeonholes, and a rule assigning each pigeon to a 
pigeonhole. 
(a) Every MIT ID number starts with a 9 (we think). Suppose that each of the 75 

students in 6.042 sums the nine digits of his or her ID number. Explain why two 
people must arrive at the same sum. 

(b) In every set of 100 integers, there exist two whose difference is a multiple of 
37. 

(c) For any five points inside a unit square (not on the boundary), there are two 
points at distance less than 1/

√
2. 

(d) Show that if n + 1 numbers are selected from {1, 2, 3, . . . , 2n}, two must be 
consecutive, that is, equal to k and k + 1 for some k. 

Homework Problems 

Problem 16.9. 
Pigeon Huntin’ 
(a) Show that any odd integer x in the range 109 < x < 2 109 containing all ten · 

digits 0, 1, . . . , 9 must have consecutive even digits. Hint: What can you conclude 
about the parities of the first and last digit? 

(b) Show that there are 2 vertices of equal degree in any finite undirected graph 
with n ≥ 2 vertices. Hint: Cases conditioned upon the existence of a degree zero 
vertex. 

Problem 16.10. 
Show that for any set of 201 positive integers less than 300, there must be two 
whose quotient is a power of three (with no remainder). 

16.4 The Generalized Product Rule 

We realize everyone has been working pretty hard this term, and we’re considering 
awarding some prizes for truly exceptional coursework. Here are some possible 
categories: 

Best Administrative Critique We asserted that the quiz was closed-book. On the 
cover page, one strong candidate for this award wrote, “There is no book.” 

Awkward Question Award “Okay, the left sock, right sock, and pants are in an 
antichain, but how— even with assistance— could I put on all three at once?” 

Best Collaboration Statement Inspired by a student who wrote “I worked alone” 
on Quiz 1. 
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In how many ways can, say, three different prizes be awarded to n people? This 
is easy to answer using our strategy of translating the problem about awards into 
a problem about sequences. Let P be the set of n people in 6.042. Then there is a 
bijection from ways of awarding the three prizes to the set P 3 ::= P × P × P . In 
particular, the assignment: 

“person x wins prize #1, y wins prize #2, and z wins prize #3” 

maps to the sequence (x, y, z). By the Product Rule, we have 
there are n3 ways to award the prizes to a class of n people. 

P 3 = P| | 3 = n3, so 

But what if the three prizes must be awarded to different students? As before, 
we could map the assignment 

“person x wins prize #1, y wins prize #2, and z wins prize #3” 

to the triple (x, y, z) ∈ P 3. But this function is no longer a bijection. For example, no 
valid assignment maps to the triple (Dave, Dave, Becky) because Dave is not al­
lowed to receive two awards. However, there is a bijection from prize assignments 
to the set: 

S = (x, y, z) ∈ P 3 | x, y, and z are different people 

This reduces the original problem to a problem of counting sequences. Unfortu­
nately, the Product Rule is of no help in counting sequences of this type because the 
entries depend on one another; in particular, they must all be different. However, 
a slightly sharper tool does the trick. 

Rule 5 (Generalized Product Rule). Let S be a set of length-k sequences. If there are: 

• n1 possible first entries, 

• n2 possible second entries for each first entry, 

• n3 possible third entries for each combination of first and second entries, etc. 

then: 
|S| = n1 · n2 · n3 · · · nk 

In the awards example, S consists of sequences (x, y, z). There are n ways to 
choose x, the recipient of prize #1. For each of these, there are n − 1 ways to choose 
y, the recipient of prize #2, since everyone except for person x is eligible. For each 
combination of x and y, there are n − 2 ways to choose z, the recipient of prize #3, 
because everyone except for x and y is eligible. Thus, according to the Generalized 
Product Rule, there are 

|S| = n · (n − 1) · (n − 2) 

ways to award the 3 prizes to different people. 
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16.4.1 Defective Dollars 

A dollar is defective if some digit appears more than once in the 8-digit serial num­
ber. If you check your wallet, you’ll be sad to discover that defective dollars are 
all-too-common. In fact, how common are nondefective dollars? Assuming that 
the digit portions of serial numbers all occur equally often, we could answer this 
question by computing: 

# of serial #’s with all digits different 
fraction dollars that are nondefective = 

total # of serial #’s 

Let’s first consider the denominator. Here there are no restrictions; there are are 10 
possible first digits, 10 possible second digits, 10 third digits, and so on. Thus, the 
total number of 8-digit serial numbers is 108 by the Product Rule. 

Next, let’s turn to the numerator. Now we’re not permitted to use any digit 
twice. So there are still 10 possible first digits, but only 9 possible second digits, 
8 possible third digits, and so forth. Thus, by the Generalized Product Rule, there 
are 

10!
10 9 8 7 6 5 4 3 = · · · · · · · 

2 
= 1, 814, 400 

serial numbers with all digits different. Plugging these results into the equation 
above, we find: 

1, 814, 400
fraction dollars that are nondefective = 

100, 000, 000 

= 1.8144% 

16.4.2 A Chess Problem 

In how many different ways can we place a pawn (p), a knight (k), and a bishop 
(b) on a chessboard so that no two pieces share a row or a column? A valid config­
uration is shown below on the left, and an invalid configuration is shown on the 
right. 

k 

b 

p 

p 

b k 

valid invalid 
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First, we map this problem about chess pieces to a question about sequences. There 
is a bijection from configurations to sequences 

(rp, cp, rk, ck, rb, cb) 

where rp, rk, and rb are distinct rows and cp, ck, and cb are distinct columns. In 
particular, rp is the pawn’s row, cp is the pawn’s column, rk is the knight’s row, etc. 
Now we can count the number of such sequences using the Generalized Product 
Rule: 

• rp is one of 8 rows 
• cp is one of 8 columns 
• rk is one of 7 rows (any one but rp) 
• ck is one of 7 columns (any one but cp) 
• rb is one of 6 rows (any one but rp or rk) 
• cb is one of 6 columns (any one but cp or ck) 

Thus, the total number of configurations is (8 7 6)2 .· · 

16.4.3 Permutations 

A permutation of a set S is a sequence that contains every element of S exactly once. 
For example, here are all the permutations of the set {a, b, c}: 

(a, b, c) (a, c, b) (b, a, c) 
(b, c, a) (c, a, b) (c, b, a) 

How many permutations of an n-element set are there? Well, there are n choices 
for the first element. For each of these, there are n − 1 remaining choices for the 
second element. For every combination of the first two elements, there are n − 2 
ways to choose the third element, and so forth. Thus, there are a total of 

n (n − 1) (n − 2) 3 2 1 = n!· · · · · · · 

permutations of an n-element set. In particular, this formula says that there are 
3! = 6 permuations of the 3-element set {a, b, c}, which is the number we found 
above. 

Permutations will come up again in this course approximately 1.6 bazillion 
times. In fact, permutations are the reason why factorial comes up so often and 
why we taught you Stirling’s approximation: 

n! ∼
√

2πn 
� n �n 

e 

16.5 The Division Rule 

Counting ears and dividing by two is a silly way to count the number of people in 
a room, but this approach is representative of a powerful counting principle. 

A k-to-1 function maps exactly k elements of the domain to every element of the 
codomain. For example, the function mapping each ear to its owner is 2-to-1: 
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ear 1 � person A 

ear 2 �

ear 3 � person B 

ear 4 �

ear 5 � person C 

ear 6 � 

Similarly, the function mapping each finger to its owner is 10-to-1, and the func­
tion mapping each finger and toe to its owner is 20-to-1. The general rule is: 

Rule 6 (Division Rule). If f : A → B is k-to-1, then |A| = k · |B|. 

For example, suppose A is the set of ears in the room and B is the set of people. 
There is a 2-to-1 mapping from ears to people, so by the Division Rule |A| = 2 · |B|
or, equivalently, |B| = |A| /2, expressing what we knew all along: the number 
of people is half the number of ears. Unlikely as it may seem, many counting 
problems are made much easier by initially counting every item multiple times and 
then correcting the answer using the Division Rule. Let’s look at some examples. 

16.5.1 Another Chess Problem 

In how many different ways can you place two identical rooks on a chessboard so 
that they do not share a row or column? A valid configuration is shown below on 
the left, and an invalid configuration is shown on the right. 

r 

r 

r 

r 

valid invalid 

Let A be the set of all sequences 

(r1, c1, r2, c2) 

where r1 and r2 are distinct rows and c1 and c2 are distinct columns. Let B be 
the set of all valid rook configurations. There is a natural function f from set A to 
set B; in particular, f maps the sequence (r1, c1, r2, c2) to a configuration with one 
rook in row r1, column c1 and the other rook in row r2, column c2. 
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But now there’s a snag. Consider the sequences: 

(1, 1, 8, 8) and (8, 8, 1, 1) 

The first sequence maps to a configuration with a rook in the lower-left corner and 
a rook in the upper-right corner. The second sequence maps to a configuration with 
a rook in the upper-right corner and a rook in the lower-left corner. The problem is 
that those are two different ways of describing the same configuration! In fact, this 
arrangement is shown on the left side in the diagram above. 

More generally, the function f maps exactly two sequences to every board con­
figuration; that is f is a 2-to-1 function. Thus, by the quotient rule, |A| = 2 · |B|. 
Rearranging terms gives: 

|B| = 
|A
2 
| 

= 
(8 · 7)2 

2 

On the second line, we’ve computed the size of A using the General Product Rule 
just as in the earlier chess problem. 

16.5.2 Knights of the Round Table 

In how many ways can King Arthur seat n different knights at his round table? 
Two seatings are considered equivalent if one can be obtained from the other by 
rotation. For example, the following two arrangements are equivalent: 

k1 k3 

k4 k2 k2 k4 

k3 k1 

Let A be all the permutations of the knights, and let B be the set of all possible 
seating arrangements at the round table. We can map each permutation in set A to 
a circular seating arrangement in set B by seating the first knight in the permuta­
tion anywhere, putting the second knight to his left, the third knight to the left of 
the second, and so forth all the way around the table. For example: 

k2 

(k2, k4, k1, k3) −→ k3 k4 

k1 
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This mapping is actually an n-to-1 function from A to B, since all n cyclic shifts of 
the original sequence map to the same seating arrangement. In the example, n = 4 
different sequences map to the same seating arrangement: 

(k2, k4, k1, k3) ��k2 

(k4, k1, k3, k2) 

(k1, k3, k2, k4) 
−→ ��k4k3 

(k3, k2, k4, k1) k1 

Therefore, by the division rule, the number of circular seating arrangements is: 

|B| = 
|A
n 
| 

n! 
= 

n 
= (n − 1)! 

Note that |A| = n! since there are n! permutations of n knights. 

16.5.3 Problems 

Class Problems 

Problem 16.11. 
Your 6.006 tutorial has 12 students, who are supposed to break up into 4 groups 
of 3 students each. Your TA has observed that the students waste too much time 
trying to form balanced groups, so he decided to pre-assign students to groups 
and email the group assignments to his students. 
(a) Your TA has a list of the 12 students in front of him, so he divides the list into 

consecutive groups of 3. For example, if the list is ABCDEFGHIJKL, the TA would 
define a sequence of four groups to be ({A, B,C} , {D,E, F } , {G, H, I} , {J, K,L}). 
This way of forming groups defines a mapping from a list of twelve students to a 
sequence of four groups. This is a k-to-1 mapping for what k? 

(b) A group assignment specifies which students are in the same group, but not 
any order in which the groups should be listed. If we map a sequence of 4 groups, 

({A, B,C} , {D,E, F } , {G, H, I} , {J, K,L}), 

into a group assignment 

{{A, B,C} , {D,E, F } , {G, H, I} , {J, K,L}} , 

this mapping is j-to-1 for what j? 
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(c) How many group assignments are possible? 

(d) In how many ways can 3n students be broken up into n groups of 3? 

Problem 16.12. 
A pizza house is having a promotional sale. Their commercial reads: 

We offer 9 different toppings for your pizza! Buy 3 large pizzas at the 
regular price, and you can get each one with as many different toppings 
as you wish, absolutely free. That’s 22, 369, 621 different ways to choose 
your pizzas! 

The ad writer was a former Harvard student who had evaluated the formula 
(29)3/3! on his calculator and gotten close to 22, 369, 621. Unfortunately, (29)3/3! is 
obviously not an integer, so clearly something is wrong. What mistaken reasoning 
might have led the ad writer to this formula? Explain how to fix the mistake and 
get a correct formula. 

Problem 16.13. 
Answer the following quesions using the Generalized Product Rule. 
(a) Next week, I’m going to get really fit! On day 1, I’ll exercise for 5 minutes. On 

each subsequent day, I’ll exercise 0, 1, 2, or 3 minutes more than the previous day. 
For example, the number of minutes that I exercise on the seven days of next week 
might be 5, 6, 9, 9, 9, 11, 12. How many such sequences are possible? 

(b) An r-permutation of a set is a sequence of r distinct elements of that set. For 
example, here are all the 2-permutations of {a, b, c, d}: 

(a, b) (a, c) (a, d) 
(b, a) (b, c) (b, d) 
(c, a) (c, b) (c, d) 
(d, a) (d, b) (d, c) 

How many r-permutations of an n-element set are there? Express your answer 
using factorial notation. 

(c) How many n×n matrices are there with distinct entries drawn from {1, . . . , p}, 
where p ≥ n2? 

Exam Problems 

Problem 16.14. 
Suppose that two identical 52-card decks are mixed together. Write a simple for­
mula for the number of 104-card double-deck mixes that are possible. 
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16.6 Counting Subsets 

How many k-element subsets of an n-element set are there? This question arises 
all the time in various guises: 

•	 In how many ways can I select 5 books from my collection of 100 to bring on 
vacation? 

•	 How many different 13-card Bridge hands can be dealt from a 52-card deck? 

•	 In how many ways can I select 5 toppings for my pizza if there are 14 avail­
able toppings? 

This number comes up so often that there is a special notation for it: 

n 
::= the number of k-element subsets of an n-element set. 

k 

n
The expression is read “n choose k.” Now we can immediately express 

k 
the answers to all three questions above: 

100 
•	 I can select 5 books from 100 in ways.

5 

52 
• There are different Bridge hands. 

13 

14 
• There are different 5-topping pizzas, if 14 toppings are available. 

5 

16.6.1 The Subset Rule 

We can derive a simple formula for the n-choose-k number using the Division 
Rule. We do this by mapping any permutation of an n-element set {a1, . . . , an}
into a k-element subset simply by taking the first k elements of the permutation. 
That is, the permutation a1a2 . . . an will map to the set {a1, a2, . . . , ak}. 

Notice that any other permutation with the same first k elements a1, . . . , ak 

in any order and the same remaining elements n − k elements in any order will 
also map to this set. What’s more, a permutation can only map to {a1, a2, . . . , ak}
if its first k elements are the elements a1, . . . , ak in some order. Since there are 
k! possible permutations of the first k elements and (n − k)! permutations of the 
remaining elements, we conclude from the Product Rule that exactly k!(n − k)! 
permutations of the n-element set map to the the particular subset, S. In other 
words, the mapping from permutations to k-element subsets is k!(n − k)!-to-1. 

But we know there are n! permutations of an n-element set, so by the Division 
Rule, we conclude that � � 

n 
n! = k!(n − k)! 

k 
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which proves: 

Rule 7 (Subset Rule). The number, � � 
n 
k 

, 

of k-element subsets of an n-element set is 

n! 
k! (n − k)! 

. 

Notice that this works even for 0-element subsets: n!/0!n! = 1. Here we use the 
fact that 0! is a product of 0 terms, which by convention equals 1. (A sum of zero 
terms equals 0.) 

16.6.2 Bit Sequences 

How many n-bit sequences contain exactly k ones? We’ve already seen the straight­
forward bijection between subsets of an n-element set and n-bit sequences. For 
example, here is a 3-element subset of {x1, x2, . . . , x8} and the associated 8-bit se­
quence: 

{
( 

x
1
1

,
, 

0, 0,
x
1
4

,
, x

1
5 

, 0, 0, 0 
}
) 

Notice that this sequence has exactly 3 ones, each corresponding to an element 
of the 3-element subset. More generally, the n-bit sequences corresponding to a 
k-element subset will have exactly k ones. So by the Bijection Rule, 

n
The number of n-bit sequences with exactly k ones is . 

k 

16.7 Sequences with Repetitions 

16.7.1 Sequences of Subsets 

Choosing a k-element subset of an n-element set is the same as splitting the set 
into a pair of subsets: the first subset of size k and the second subset consisting of 
the remaining n − k elements. So the Subset Rule can be understood as a rule for 
counting the number of such splits into pairs of subsets. 

We can generalize this to splits into more than two subsets. Namely, let A be 
an n-element set and k1, k2, . . . , km be nonnegative integers whose sum is n. A 
(k1, k2, . . . , km)-split of A is a sequence 

(A1, A2, . . . , Am) 

where the Ai are pairwise disjoint2 subsets of A and |Ai| = ki for i = 1, . . . ,m. 

2That is Ai ∩ Aj = ∅ whenever i �= j. Another way to say this is that no element appears in more 
than one of the Ai’s. 
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The same reasoning used to explain the Subset Rule extends directly to a rule 
for counting the number of splits into subsets of given sizes. 

Rule 8 (Subset Split Rule). The number of (k1, k2, . . . , km)-splits of an n-element set is 

n n! 
::= 

k1, . . . , km k1! k2! km!· · · 

The proof of this Rule is essentially the same as for the Subset Rule. Namely, 
we map any permutation a1a2 . . . an of an n-element set, A, into a (k1, k2, . . . , km)­
split by letting the 1st subset in the split be the first k1 elements of the permutation, 
the 2nd subset of the split be the next k2 elements, . . . , and the mth subset of the 
split be the final km elements of the permutation. This map is a k1! k2! km!-to-1· · · 
from the n! permutations to the (k1, k2, . . . , km)-splits of A, and the Subset Split 
Rule now follows from the Division Rule. 

16.7.2 The Bookkeeper Rule 

We can also generalize our count of n-bit sequences with k-ones to counting length 
n sequences of letters over an alphabet with more than two letters. For example, 
how many sequences can be formed by permuting the letters in the 10-letter word 
BOOKKEEPER? 

Notice that there are 1 B, 2 O’s, 2 K’s, 3 E’s, 1 P, and 1 R in BOOKKEEPER. This 
leads to a straightforward bijection between permutations of BOOKKEEPER and 
(1,2,2,3,1,1)-splits of {1, . . . , n}. Namely, map a permutation to the sequence of sets 
of positions where each of the different letters occur. 

For example, in the permutation BOOKKEEPER itself, the B is in the 1st posi­
tion, the O’s occur in the 2nd and 3rd positions, K’s in 4th and 5th, the E’s in the 
6th, 7th and 9th, P in the 8th, and R is in the 10th position, so BOOKKEEPER maps 
to 

({1} , {2, 3} , {4, 5} , {6, 7, 9} , {8} , {10}). 
From this bijection and the Subset Split Rule, we conclude that the number of ways 
to rearrange the letters in the word BOOKKEEPER is: 

total letters 

10! 
1! 2! 2! 3! 1! 1!���� ���� ���� ���� ���� ���� 
B’s O’s K’s E’s P’s R’s 

This example generalizes directly to an exceptionally useful counting principle 
which we will call the 

Rule 9 (Bookkeeper Rule). Let l1, . . . , lm be distinct elements. The number of sequences 
with k1 occurrences of l1, and k2 occurrences of l2, . . . , and km occurrences of lm is 

(k1 + k2 + . . . + km)! 
k1! k2! . . . km! 



355 16.7. SEQUENCES WITH REPETITIONS 

Example. 20-Mile Walks. 
I’m planning a 20-mile walk, which should include 5 northward miles, 5 east­

ward miles, 5 southward miles, and 5 westward miles. How many different walks 
are possible? 

There is a bijection between such walks and sequences with 5 N’s, 5 E’s, 5 S’s, 
and 5 W’s. By the Bookkeeper Rule, the number of such sequences is: 

20! 
5!4 

16.7.3 A Word about Words 

Someday you might refer to the Subset Split Rule or the Bookkeeper Rule in front 
of a roomful of colleagues and discover that they’re all staring back at you blankly. 
This is not because they’re dumb, but rather because we made up the name “Book­
keeper Rule”. However, the rule is excellent and the name is apt, so we suggest 
that you play through: “You know? The Bookkeeper Rule? Don’t you guys know 
anything???” 

The Bookkeeper Rule is sometimes called the “formula for permutations with 
indistinguishable objects.” The size k subsets of an n-element set are sometimes 
called k-combinations. Other similar-sounding descriptions are “combinations with 
repetition, permutations with repetition, r-permutations, permutations with indis­
tinguishable objects,” and so on. However, the counting rules we’ve taught you 
are sufficient to solve all these sorts of problems without knowing this jargon, so 
we won’t burden you with it. 

16.7.4 Problems 

Class Problems 

Problem 16.15. 
The Tao of BOOKKEEPER: we seek enlightenment through contemplation of the 
word BOOKKEEPER. 

(a) In how many ways can you arrange the letters in the word POKE? 

(b) In how many ways can you arrange the letters in the word BO1O2K? Observe 
that we have subscripted the O’s to make them distinct symbols. 

(c) Suppose we map arrangements of the letters in BO1O2K to arrangements 
of the letters in BOOK by erasing the subscripts. Indicate with arrows how the 
arrangements on the left are mapped to the arrangements on the right. 
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O2BO1K

KO2BO1
 BOOK 
O1BO2K 

OBOK 
KO1BO2 KOBO 
BO1O2K 

. . . 
BO2O1K

. . .


(d) What kind of mapping is this, young grasshopper? 

(e) In light of the Division Rule, how many arrangements are there of BOOK? 

(f) Very good, young master! How many arrangements are there of the letters in 
KE1E2PE3R? 

(g) Suppose we map each arrangement of KE1E2PE3R to an arrangement of 
KEEPER by erasing subscripts. List all the different arrangements of KE1E2PE3R 
that are mapped to REPEEK in this way. 

(h) What kind of mapping is this? 

(i) So how many arrangements are there of the letters in KEEPER? 

(j) Now you are ready to face the BOOKKEEPER! 

How many arrangements of BO1O2K1K2E1E2PE3R are there? 

(k) How many arrangements of BOOK1K2E1E2PE3R are there? 

(l) How many arrangements of BOOKKE1E2PE3R are there? 

(m) How many arrangements of BOOKKEEPER are there? 

Remember well what you have learned: subscripts on, subscripts off.

This is the Tao of Bookkeeper.


(n) How many arrangements of V OODOODOLL are there? 

(o) How many length 52 sequences of digits contain exactly 17 two’s, 23 fives, 
and 12 nines? 

16.8 Magic Trick 

There is a Magician and an Assistant. The Assistant goes into the audience with a 
deck of 52 cards while the Magician looks away.3 

3 There are 52 cards in a standard deck. Each card has a suit and a rank. There are four suits: 

♠( spades) ♥( hearts) ♣( clubs) ♦( diamonds) 
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Five audience members each select one card from the deck. The Assistant then 
gathers up the five cards and holds up four of them so the Magician can see them. 
The Magician concentrates for a short time and then correctly names the secret, 
fifth card! 

Since we don’t really believe the Magician can read minds, we know the As­
sistant has somehow communicated the secret card to the Magician. Since real 
Magicians and Assistants are not to be trusted, we can expect that the Assistant 
would illegitimately signal the Magician with coded phrases or body language, 
but they don’t have to cheat in this way. In fact, the Magician and Assistant could 
be kept out of sight of each other while some audience member holds up the 4 
cards designated by the Assistant for the Magician to see. 

Of course, without cheating, there is still an obvious way the Assistant can 
communicate to the Magician: he can choose any of the 4! = 24 permutations of 
the 4 cards as the order in which to hold up the cards. However, this alone won’t 
quite work: there are 48 cards remaining in the deck, so the Assistant doesn’t have 
enough choices of orders to indicate exactly what the secret card is (though he 
could narrow it down to two cards). 

16.8.1 The Secret 

The method the Assistant can use to communicate the fifth card exactly is a nice 
application of what we know about counting and matching. 

The Assistant really has another legitimate way to communicate: he can choose 
which of the five cards to keep hidden. Of course, it’s not clear how the Magician could 
determine which of these five possibilities the Assistant selected by looking at the 
four visible cards, but there is a way, as we’ll now explain. 

The problem facing the Magician and Assistant is actually a bipartite matching 
problem. Put all the sets of 5 cards in a collection, X , on the left. And put all the 
sequences of 4 distinct cards in a collection, Y , on the right. These are the two sets 
of vertices in the bipartite graph. There is an edge between a set of 5 cards and 
a sequence of 4 if every card in the sequence is also in the set. In other words, if 
the audience selects a set of cards, then the Assistant must reveal a sequence of 
cards that is adjacent in the bipartite graph. Some edges are shown in the diagram 
below. 

And there are 13 ranks, listed here from lowest to highest: 

Ace Jack Queen King 
A , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , J , Q , K 

Thus, for example, 8♥ is the 8 of hearts and A♠ is the ace of spades. 
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• Y = all • 
X = 

all sets of • sequences of 4 

distinct cards 
• 

5 cards • • 

• 
����
����

��
� 

���
���

�� (8♥, K♠, Q♠, 2♦) 

{8♥, K♠, Q♠, 2♦, 6♦} (K♠, 8♥, Q♠, 2♦)������������� (K♠, 8♥, 6♦, Q♠)• 

{8♥, K♠, Q♠, 9♣, 6♦} • 

For example, 
{8♥, K♠, Q♠, 2♦, 6♦} (16.2) 

is an element of X on the left. If the audience selects this set of 5 cards, then 
there are many different 4-card sequences on the right in set Y that the Assis­
tant could choose to reveal, including (8♥, K♠, Q♠, 2♦), (K♠, 8♥, Q♠, 2♦), and 
(K♠, 8♥, 6♦, Q♠). 

What the Magician and his Assistant need to perform the trick is a matching for 
the X vertices. If they agree in advance on some matching, then when the audience 
selects a set of 5 cards, the Assistant reveals the matching sequence of 4 cards. The 
Magician uses the reverse of the matching to find the audience’s chosen set of 5 
cards, and so he can name the one not already revealed. 

For example, suppose the Assistant and Magician agree on a matching contain­
ing the two bold edges in the diagram above. If the audience selects the set 

{8♥, K♠, Q♠, 9♣, 6♦} , (16.3) 

then the Assistant reveals the corresponding sequence 

(K♠, 8♥, 6♦, Q♠). (16.4) 

Using the matching, the Magician sees that the hand (16.3) is matched to the se­
quence (16.4), so he can name the one card in the corresponding set not already 
revealed, namely, the 9♣. Notice that the fact that the sets are matched, that is, that 
different sets are paired with distinct sequences, is essential. For example, if the 
audience picked the previous hand (16.2), it would be possible for the Assistant 
to reveal the same sequence (16.4), but he better not do that: if he did, then the 
Magician would have no way to tell if the remaining card was the 9♣ or the 2♦. 

So how can we be sure the needed matching can be found? The reason is that 
each vertex on the left has degree 5 4! = 120, since there are five ways to select· 
the card kept secret and there are 4! permutations of the remaining 4 cards. In 
addition, each vertex on the right has degree 48, since there are 48 possibilities for 
the fifth card. So this graph is degree-constrained according to Definition 10.6.5, and 
therefore satisfies Hall’s matching condition. 
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In fact, this reasoning show that the Magician could still pull off the trick if 120 
cards were left instead of 48, that is, the trick would work with a deck as large as 
124 different cards —without any magic! 

16.8.2 The Real Secret 

But wait a minute! It’s all very well in principle to have the Magician and his 
Assistant agree on a matching, but how are they supposed to remember a matching 

52with 5 = 2, 598, 960 edges? For the trick to work in practice, there has to be a 
way to match hands and card sequences mentally and on the fly. 

We’ll describe one approach. As a running example, suppose that the audience 
selects: 

10♥ 9♦ 3♥ Q♠ J♦ 

•	 The Assistant picks out two cards of the same suit. In the example, the assis­
tant might choose the 3♥ and 10♥. 

•	 The Assistant locates the ranks of these two cards on the cycle shown below: 

K
A 2 

Q	 3 

J	 4 

10	 5 

9 6 
8 7 

For any two distinct ranks on this cycle, one is always between 1 and 6 hops 
clockwise from the other. For example, the 3♥ is 6 hops clockwise from the 
10♥. 

•	 The more counterclockwise of these two cards is revealed first, and the other 
becomes the secret card. Thus, in our example, the 10♥ would be revealed, 
and the 3♥ would be the secret card. Therefore: 

–	 The suit of the secret card is the same as the suit of the first card revealed. 
–	 The rank of the secret card is between 1 and 6 hops clockwise from the 

rank of the first card revealed. 

•	 All that remains is to communicate a number between 1 and 6. The Magician 
and Assistant agree beforehand on an ordering of all the cards in the deck 
from smallest to largest such as: 

. . . A♣ A♦ A♥ A♠ 2♣ 2♦ 2♥ 2♠ K♥ K♠ 
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The order in which the last three cards are revealed communicates the num­
ber according to the following scheme: 

( small, medium, large ) = 1 
( small, large, medium ) = 2 
( medium, small, large ) = 3 
( medium, large, small ) = 4 
( large, small, medium ) = 5 
( large, medium, small ) = 6 

In the example, the Assistant wants to send 6 and so reveals the remaining 
three cards in large, medium, small order. Here is the complete sequence that 
the Magician sees: 

10♥ Q♠ J♦ 9♦ 

•	 The Magician starts with the first card, 10♥, and hops 6 ranks clockwise to 
reach 3♥, which is the secret card! 

So that’s how the trick can work with a standard deck of 52 cards. On the 
other hand, Hall’s Theorem implies that the Magician and Assistant can in principle 
perform the trick with a deck of up to 124 cards. It turns out that there is a method 
which they could actually learn to use with a reasonable amount of practice for a 
124 card deck (see The Best Card Trick by Michael Kleber). 

16.8.3 Same Trick with Four Cards? 

Suppose that the audience selects only four cards and the Assistant reveals a se­
quence of three to the Magician. Can the Magician determine the fourth card? 

Let X be all the sets of four cards that the audience might select, and let Y be 
all the sequences of three cards that the Assistant might reveal. Now, on one hand, 
we have � �

52 |X| = 
4 

= 270, 725 

by the Subset Rule. On the other hand, we have 

|Y | = 52 · 51 · 50 = 132, 600 

by the Generalized Product Rule. Thus, by the Pigeonhole Principle, the Assistant 
must reveal the same sequence of three cards for at least 

270, 725 
= 3 

132, 600 

different four-card hands. This is bad news for the Magician: if he sees that se­
quence of three, then there are at least three possibilities for the fourth card which 
he cannot distinguish. So there is no legitimate way for the Assistant to communi­
cate exactly what the fourth card is! 

http://courses.csail.mit.edu/6.042/spring10/cardTrick.pdf
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16.8.4 Problems 

Class Problems 

Problem 16.16. (a) Show that the Magician could not pull off the trick with a deck 
larger than 124 cards. 

Hint: Compare the number of 5-card hands in an n-card deck with the number of 
4-card sequences. 

(b) Show that, in principle, the Magician could pull off the Card Trick with a deck 
of 124 cards. 

Hint: Hall’s Theorem and degree-constrained (10.6.5) graphs. 

Problem 16.17. 
The Magician can determine the 5th card in a poker hand when his Assisant reveals 
the other 4 cards. Describe a similar method for determining 2 hidden cards in a 
hand of 9 cards when your Assisant reveals the other 7 cards. 

Homework Problems 

Problem 16.18. 
Section 16.8.3 explained why it is not possible to perform a four-card variant of the 
hidden-card magic trick with one card hidden. But the Magician and her Assistant 
are determined to find a way to make a trick like this work. They decide to change 
the rules slightly: instead of the Assistant lining up the three unhidden cards for 
the Magician to see, he will line up all four cards with one card face down and the 
other three visible. We’ll call this the face-down four-card trick. 

For example, suppose the audience members had selected the cards 9♥, 10♦, 
A♣, 5♣. Then the Assistant could choose to arrange the 4 cards in any order so 
long as one is face down and the others are visible. Two possibilities are: 

A♣ ? 10♦ 5♣ 

? 5♣ 9♥ 10♦ 

(a) Explain why there must be a bipartite matching which will in theory allow the 
Magician and Assistant to perform the face-down four-card trick. 

(b) There is actually a simple way to perform the face-down four-card trick. 
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Case 1. there are two cards with the same suit: Say there are two ♠ cards. The Assistant 
proceeds as in the original card trick: he puts one of the ♠ cards face up as the first 
card. He will place the second ♠ card face down. He then uses a permutation of the 
face down card and the remaining two face up cards to code the offset of the face 
down card from the first card. 

Case 2. all four cards have different suits: Assign numbers 0, 1, 2, 3 to the four suits in 
some agreed upon way. The Assistant computes, s, the sum modulo 4 of the ranks 
of the four cards, and chooses the card with suit s to be placed face down as the first 
card. He then uses a permutation of the remaining three face-up cards to code the 
rank of the face down card.a 

aThis elegant method was devised in Fall ’09 by student Katie E Everett. 

Explain how in Case 2. the Magician can determine the face down card from the 
cards the Assistant shows her. 

(c) Explain how any method for performing the face-down four-card trick can be 
adapted to perform the regular (5-card hand, show 4 cards) with a 52-card deck 
consisting of the usual 52 cards along with a 53rd card call the joker. 

16.9 Counting Practice: Poker Hands 

Five-Card Draw is a card game in which each player is initially dealt a hand, a 
subset of 5 cards. (Then the game gets complicated, but let’s not worry about 
that.) The number of different hands in Five-Card Draw is the number of 5-element 
subsets of a 52-element set, which is 52 choose 5: 

52
total # of hands = = 2, 598, 960

5 

Let’s get some counting practice by working out the number of hands with various 
special properties. 

16.9.1 Hands with a Four-of-a-Kind 

A Four-of-a-Kind is a set of four cards with the same rank. How many different 
hands contain a Four-of-a-Kind? Here are a couple examples: 

{ 8♠, 8♦, Q♥, 8♥, 8♣ }
{ A♣, 2♣, 2♥, 2♦, 2♠ } 

As usual, the first step is to map this question to a sequence-counting problem. A 
hand with a Four-of-a-Kind is completely described by a sequence specifying: 
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1. The rank of the four cards. 

2. The rank of the extra card. 

3. The suit of the extra card. 

Thus, there is a bijection between hands with a Four-of-a-Kind and sequences con­
sisting of two distinct ranks followed by a suit. For example, the three hands above 
are associated with the following sequences: 

(8, Q, ♥) 8♠, 8♦, 8♥, 8♣, Q♥
(2, A, ♣) 

↔ { } 
↔ { 2♣, 2♥, 2♦, 2♠, A♣ } 

Now we need only count the sequences. There are 13 ways to choose the first rank, 
12 ways to choose the second rank, and 4 ways to choose the suit. Thus, by the 
Generalized Product Rule, there are 13 12 4 = 624 hands with a Four-of-a-Kind. · · 
This means that only 1 hand in about 4165 has a Four-of-a-Kind; not surprisingly, 
this is considered a very good poker hand! 

16.9.2 Hands with a Full House 

A Full House is a hand with three cards of one rank and two cards of another rank. 
Here are some examples: 

{ 2♠, 2♣, 2♦, J♣, J♦ }
{ 5♦, 5♣, 5♥, 7♥, 7♣ } 

Again, we shift to a problem about sequences. There is a bijection between Full 
Houses and sequences specifying: 

1. The rank of the triple, which can be chosen in 13 ways. 

2. The suits of the triple, which can be selected in 3
4 ways. 

3. The rank of the pair, which can be chosen in 12 ways. 

4. The suits of the pair, which can be selected in 2
4 ways. 

The example hands correspond to sequences as shown below: 

(2, {♠, ♣, ♦} , J, {♣, ♦}) ↔ { 2♠, 2♣, 2♦, J♣, J♦ }
(5, {♦, ♣, ♥} , 7, {♥, ♣}) ↔ { 5♦, 5♣, 5♥, 7♥, 7♣ } 

By the Generalized Product Rule, the number of Full Houses is: 

4 4
13 12· 

3 
· · 

2 

We’re on a roll— but we’re about to hit a speedbump. 
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16.9.3 Hands with Two Pairs 

How many hands have Two Pairs; that is, two cards of one rank, two cards of 
another rank, and one card of a third rank? Here are examples: 

{ 3♦, 3♠, Q♦, Q♥, A♣ }
{ 9♥, 9♦, 5♥, 5♣, K♠ } 

Each hand with Two Pairs is described by a sequence consisting of: 

1. The rank of the first pair, which can be chosen in 13 ways. 

2. The suits of the first pair, which can be selected 4
2 ways. 

3. The rank of the second pair, which can be chosen in 12 ways. 

4. The suits of the second pair, which can be selected in 4
2 ways. 

5. The rank of the extra card, which can be chosen in 11 ways. 

6. The suit of the extra card, which can be selected in 4
1 = 4 ways. 

Thus, it might appear that the number of hands with Two Pairs is: 

4 4
13 12 11 4· 

2 
· · 

2 
· · 

Wrong answer! The problem is that there is not a bijection from such sequences to 
hands with Two Pairs. This is actually a 2-to-1 mapping. For example, here are the 
pairs of sequences that map to the hands given above: 

(3, {♦, ♠} , Q, {♦, ♥} , A, ♣) � 

(Q, {♦, ♥} , 3, {♦, ♠} , A, ♣) 
{ 3♦, 3♠, Q♦, Q♥, A♣ } 

(9, {♥, ♦} , 5, {♥, ♣} , K, ♠) � 
{ 9♥, 9♦, 5♥, 5♣, K♠ }

(5, {♥, ♣} , 9, {♥, ♦} , K, ♠) � 

The problem is that nothing distinguishes the first pair from the second. A pair of 
5’s and a pair of 9’s is the same as a pair of 9’s and a pair of 5’s. We avoided this 
difficulty in counting Full Houses because, for example, a pair of 6’s and a triple 
of kings is different from a pair of kings and a triple of 6’s. 

We ran into precisely this difficulty last time, when we went from counting 
arrangements of different pieces on a chessboard to counting arrangements of two 
identical rooks. The solution then was to apply the Division Rule, and we can do the 
same here. In this case, the Division rule says there are twice as many sequences 
as hands, so the number of hands with Two Pairs is actually: 

13 4
2 12 4

2 · 11 4·· · · 
2 
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Another Approach 

The preceding example was disturbing! One could easily overlook the fact that the 
mapping was 2-to-1 on an exam, fail the course, and turn to a life of crime. You 
can make the world a safer place in two ways: 

1. Whenever you use a mapping f : A B to translate one counting problem →
to another, check that the same number elements in A are mapped to each 
element in B. If k elements of A map to each of element of B, then apply the 
Division Rule using the constant k. 

2. As an extra check, try solving the same problem in a different way. Multiple 
approaches are often available— and all had better give the same answer! 
(Sometimes different approaches give answers that look different, but turn 
out to be the same after some algebra.) 

We already used the first method; let’s try the second. There is a bijection be­
tween hands with two pairs and sequences that specify: 

131. The ranks of the two pairs, which can be chosen in 2 ways. 

2. The suits of the lower-rank pair, which can be selected in 2
4 ways. 

3. The suits of the higher-rank pair, which can be selected in 4
2 ways. 

4. The rank of the extra card, which can be chosen in 11 ways. 

5. The suit of the extra card, which can be selected in 4
1 = 4 ways. 

For example, the following sequences and hands correspond: 

({3, Q} , {♦, ♠} , {♦, ♥} , A, ♣) ↔ { 3♦, 3♠, Q♦, Q♥, A♣ }
({9, 5} , {♥, ♣} , {♥, ♦} , K, ♠) ↔ { 9♥, 9♦, 5♥, 5♣, K♠ } 

Thus, the number of hands with two pairs is: 

13 4 4 
11 4

2 
· 

2 
· 

2 
· · 

This is the same answer we got before, though in a slightly different form. 

16.9.4 Hands with Every Suit 

How many hands contain at least one card from every suit? Here is an example of 
such a hand: 

{ 7♦, K♣, 3♦, A♥, 2♠ } 

Each such hand is described by a sequence that specifies: 

1. The ranks of the diamond, the club, the heart, and the spade, which can be 
selected in 13 13 13 13 = 134 ways.· · · 
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2. The suit of the extra card, which can be selected in 4 ways. 

3. The rank of the extra card, which can be selected in 12 ways. 

For example, the hand above is described by the sequence: 

(7, K,A, 2, ♦, 3) ↔ { 7♦, K♣, A♥, 2♠, 3♦ } 

Are there other sequences that correspond to the same hand? There is one more! 
We could equally well regard either the 3♦ or the 7♦ as the extra card, so this 
is actually a 2-to-1 mapping. Here are the two sequences corresponding to the 
example hand: 

(7, K,A, 2, ♦, 3) � 
{ 7♦, K♣, A♥, 2♠, 3♦ }

(3, K,A, 2, ♦, 7) � 

Therefore, the number of hands with every suit is: 

134 4 12· · 
2 

16.9.5 Problems 

Class Problems 

Problem 16.19. 
Solve the following counting problems by defining an appropriate mapping (bijec­
tive or k-to-1) between a set whose size you know and the set in question. 
(a) How many different ways are there to select a dozen donuts if four varieties 

are available? 

(b) In how many ways can Mr. and Mrs. Grumperson distribute 13 identical 
pieces of coal to their two —no, three! —children for Christmas? 

(c) How many solutions over the nonnegative integers are there to the inequality: 

x1 + x2 + . . . + x10 100≤ 

(d) We want to count step-by-step paths between points in the plane with integer 
coordinates. Ony two kinds of step are allowed: a right-step which increments the 
x coordinate, and an up-step which increments the y coordinate. 

(i) How many paths are there from (0, 0) to (20, 30)? 

(ii) How many paths are there from (0, 0) to (20, 30) that go through the point 
(10, 10)? 
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(iii) How many paths are there from (0, 0) to (20, 30) that do not go through either 
of the points (10, 10) and (15, 20)?

Hint: Let P be the set of paths from (0, 0) to (20, 30), N1 be the paths in P that

go through (10, 10) and N2 be the paths in P that go through (15, 20).


Problem 16.20. 
Solve the following counting problems. Define an appropriate mapping (bijective 
or k-to-1) between a set whose size you know and the set in question. 
(a) An independent living group is hosting nine new candidates for member­

ship. Each candidate must be assigned a task: 1 must wash pots, 2 must clean the 
kitchen, 3 must clean the bathrooms, 1 must clean the common area, and 2 must 
serve dinner. Write a multinomial coefficient for the number of ways this can be 
done. 

(b) Write a multinomial coefficient for the number of nonnegative integer solu­
tions for the equation: 

x1 + x2 + x3 + x4 + x5 = 8.	 (16.5) 

(c) How many nonnegative integers less than 1,000,000 have exactly one digit 
equal to 9 and have a sum of digits equal to 17? 

Exam Problems 

Problem 16.21. 
Here are the solutions to the next 10 problem parts, in no particular order. 

m n n! n + m n − 1 + m n − 1 + m 
2mn n m 

(n − m)! m m	 n 

(a)	 How many solutions over the natural numbers are there to the inequality 
x1 + x2 + + xn ≤ m?· · · 

(b)	 How many length m words can be formed from an n-letter alphabet, if no 
letter is used more than once? 

(c)	 How many length m words can be formed from an n-letter alphabet, if 
letters can be reused? 
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(d)	 How many binary relations are there from set A to set B when |A| = m 
and |B| = n? 

(e)	 How many injections are there from set A to set B, where A = m and

|B| = n ≥ m? 

| |


(f)	 How many ways are there to place a total of m distinguishable balls into

n distinguishable urns, with some urns possibly empty or with several

balls?


(g)	 How many ways are there to place a total of m indistinguishable balls into

n distinguishable urns, with some urns possibly empty or with several

balls?


(h)	 How many ways are there to put a total of m distinguishable balls into n

distinguishable urns with at most one ball in each urn?


16.10 Inclusion-Exclusion 

How big is a union of sets? For example, suppose there are 60 math majors, 200 
EECS majors, and 40 physics majors. How many students are there in these three 
departments? Let M be the set of math majors, E be the set of EECS majors, and P 
be the set of physics majors. In these terms, we’re asking for |M ∪ E ∪ P |. 

The Sum Rule says that the size of union of disjoint sets is the sum of their sizes: 

|M ∪ E ∪ P | = |M | + |E| + |P | (if M , E, and P are disjoint) 

However, the sets M , E, and P might not be disjoint. For example, there might be 
a student majoring in both math and physics. Such a student would be counted 
twice on the right side of this equation, once as an element of M and once as an 
element of P . Worse, there might be a triple-major4 counted three times on the right 
side! 

Our last counting rule determines the size of a union of sets that are not neces­
sarily disjoint. Before we state the rule, let’s build some intuition by considering 
some easier special cases: unions of just two or three sets. 

16.10.1 Union of Two Sets 

For two sets, S1 and S2, the Inclusion-Exclusion Rule is that the size of their union 
is: 

|S1 ∪ S2| = |S1| + |S2| − |S1 ∩ S2|	 (16.6) 

4. . . though not at MIT anymore. 
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Intuitively, each element of S1 is accounted for in the first term, and each element 
of S2 is accounted for in the second term. Elements in both S1 and S2 are counted 
twice— once in the first term and once in the second. This double-counting is 
corrected by the final term. 

We can capture this double-counting idea in a precise way by decomposing the 
union of S1 and S2 into three disjoint sets, the elements in each set but not the 
other, and the elements in both: 

S1 ∪ S2 = (S1 − S2) ∪ (S2 − S1) ∪ (S1 ∩ S2). (16.7) 

Similarly, we can decompose each of S1 and S2 into the elements exclusively in 
each set and the elements in both: 

S1 = (S1 − S2) ∪ (S1 ∩ S2), (16.8) 
S2 = (S2 − S1) ∪ (S1 ∩ S2). (16.9) 

Now we have from (16.8) and (16.9) 

|S1| + |S2| = (|S1 − S2| + |S1 ∩ S2|) + (|S2 − S1| + |S1 ∩ S2|) 
= |S1 − S2| + |S2 − S1| + 2 |S1 ∩ S2| , (16.10) 

which shows the double-counting of S1 ∩ S2 in the sum. On the other hand, we 
have from (16.7) 

|S1 ∪ S2| = |S1 − S2| + |S2 − S1| + |S1 ∩ S2| . (16.11) 

Subtracting (16.11) from (16.10), we get 

(|S1| + |S2|) − |S1 ∪ S2| = |S1 ∩ S2| 

which proves (16.6). 

16.10.2 Union of Three Sets 

So how many students are there in the math, EECS, and physics departments? In 
other words, what is |M ∪ E ∪ P | if: 

|M | = 60 

|E| = 200 

|P | = 40 

The size of a union of three sets is given by a more complicated Inclusion-Exclusion 
formula: 

|S1 ∪ S2 ∪ S3| = |S1| + |S2| + |S3| 
− |S1 ∩ S2| − |S1 ∩ S3| − |S2 ∩ S3|
+ |S1 ∩ S2 ∩ S3| 
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Remarkably, the expression on the right accounts for each element in the union of 
S1, S2, and S3 exactly once. For example, suppose that x is an element of all three 
sets. Then x is counted three times (by the |S1|, |S2|, and |S3| terms), subtracted off 
three times (by the |S1 ∩ S2|, |S1 ∩ S3|, and |S2 ∩ S3| terms), and then counted once 
more (by the |S1 ∩ S2 ∩ S3| term). The net effect is that x is counted just once. 

So we can’t answer the original question without knowing the sizes of the var­
ious intersections. Let’s suppose that there are: 

4 math - EECS double majors 
3 math - physics double majors 

11 EECS - physics double majors 
2 triple majors 

Then |M ∩ E| = 4 + 2, |M ∩ P | = 3 + 2, |E ∩ P | = 11 + 2, and |M ∩ E ∩ P | = 2. 
Plugging all this into the formula gives: 

|M ∪ E ∪ P | = |M | + |E| + |P | − |M ∩ E| − |M ∩ P | − |E ∩ P | + |M ∩ E ∩ P |
= 60 + 200 + 40 − 6 − 5 − 13 + 2 

= 278 

Sequences with 42, 04, or 60 

In how many permutations of the set {0, 1, 2, . . . , 9} do either 4 and 2, 0 and 4, or 6 
and 0 appear consecutively? For example, none of these pairs appears in: 

(7, 2, 9, 5, 4, 1, 3, 8, 0, 6) 

The 06 at the end doesn’t count; we need 60. On the other hand, both 04 and 60 
appear consecutively in this permutation: 

(7, 2, 5, 6, 0, 4, 3, 8, 1, 9) 

Let P42 be the set of all permutations in which 42 appears; define P60 and P04 

similarly. Thus, for example, the permutation above is contained in both P60 and 
P04. In these terms, we’re looking for the size of the set P42 ∪ P04 ∪ P60. 

First, we must determine the sizes of the individual sets, such as P60. We can 
use a trick: group the 6 and 0 together as a single symbol. Then there is a natural 
bijection between permutations of {0, 1, 2, . . . 9} containing 6 and 0 consecutively 
and permutations of: 

{60, 1, 2, 3, 4, 5, 7, 8, 9} 

For example, the following two sequences correspond: 

(7, 2, 5, 6, 0, 4, 3, 8, 1, 9) (7, 2, 5, 60, 4, 3, 8, 1, 9)↔ 

There are 9! permutations of the set containing 60, so |P60| = 9! by the Bijection 
Rule. Similarly, |P04| = |P42| = 9! as well. 
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Next, we must determine the sizes of the two-way intersections, such as P42 ∩
P60. Using the grouping trick again, there is a bijection with permutations of the 
set: 

{42, 60, 1, 3, 5, 7, 8, 9} 

Thus, |P42 ∩ P60| = 8!. Similarly, |P60 ∩ P04| = 8! by a bijection with the set: 

{604, 1, 2, 3, 5, 7, 8, 9} 

And |P42 ∩ P04| = 8! as well by a similar argument. Finally, note that |P60 ∩ P04 ∩ P42| = 
7! by a bijection with the set: 

{6042, 1, 3, 5, 7, 8, 9} 

Plugging all this into the formula gives: 

|P42 ∪ P04 ∪ P60| = 9! + 9! + 9! − 8! − 8! − 8! + 7! 

16.10.3 Union of n Sets 

The size of a union of n sets is given by the following rule. 

Rule 10 (Inclusion-Exclusion). 

=|S1 ∪ S2 ∪ · · · ∪ Sn| 

the sum of the sizes of the individual sets 
minus the sizes of all two-way intersections 

plus the sizes of all three-way intersections 
minus the sizes of all four-way intersections 

plus the sizes of all five-way intersections, etc. 

The formulas for unions of two and three sets are special cases of this general 
rule. 

This way of expressing Inclusion-Exclusion is easy to understand and nearly 
as precise as expressing it in mathematical symbols, but we’ll need the symbolic 
version below, so let’s work on deciphering it now. 

We already have a standard notation for the sum of sizes of the individual sets, 
namely, 

n

|Si| . 
i=1 

A “two-way intersection” is a set of the form Si ∩ Sj for i =� j. We regard Sj ∩ Si 

as the same two-way intersection as Si ∩ Sj , so we can assume that i < j. Now we 
can express the sum of the sizes of the two-way intersections as 

.|Si ∩ Sj |
1≤i<j≤n 
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Similarly, the sum of the sizes of the three-way intersections is 

.|Si ∩ Sj ∩ Sk|
1≤i<j<k≤n 

These sums have alternating signs in the Inclusion-Exclusion formula, with the 
sum of the k-way intersections getting the sign (−1)k−1 . This finally leads to a 
symbolic version of the rule: 

Rule (Inclusion-Exclusion). 

n

 
Si 

n

= |Si|
i=1 i=1 

− |Si ∩ Sj |
1≤i<j≤n 

+ |Si ∩ Sj ∩ Sk| + · · · 
1≤i<j<k≤n


n


+ (−1)n−1 Si . 
i=1 

16.10.4 Computing Euler’s Function 

We will now use Inclusion-Exclusion to calculate Euler’s function, φ(n). By defini­
tion, φ(n) is the number of nonnegative integers less than a positive integer n that 
are relatively prime to n. But the set, S, of nonnegative integers less than n that are 
not relatively prime to n will be easier to count. 

Suppose the prime factorization of n is p1 
e1 pm

em for distinct primes pi. This· · · 
means that the integers in S are precisely the nonnegative integers less than n that 
are divisible by at least one of the pi’s. So, letting Ci be the set of nonnegative 
integers less than n that are divisible by pi, we have 

m

 
S = Ci. 

i=1 

We’ll be able to find the size of this union using Inclusion-Exclusion because 
the intersections of the Ci’s are easy to count. For example, C1 ∩ C2 ∩ C3 is the 
set of nonnegative integers less than n that are divisible by each of p1, p2 and p3. 
But since the pi’s are distinct primes, being divisible by each of these primes is that 
same as being divisible by their product. Now observe that if r is a positive divisor 
of n, then exactly n/r nonnegative integers less than n are divisible by r, namely, 
0, r, 2r, . . . , ((n/r) − 1)r. So exactly n/p1p2p3 nonnegative integers less than n are 
divisible by all three primes p1, p2, p3. In other words, 

n
|C1 ∩ C2 ∩ C3| = 
p1p2p3 

.
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So reasoning this way about all the intersections among the Ci’s and applying 
Inclusion-Exclusion, we get 

= Ci 

m

 
|S| 

i=1 

m

= |
m

i=1 

+Ci| − |Ci ∩ Cj | |Ci ∩ Cj ∩ Ck| − · · · + (−1)m−1 Ci 

i=1 1≤i<j≤m 1≤i<j<k≤m 

m

= + 
pi 
− 

pipj pipj pk 

m

� 

i=1 

n n n n − · · · + (−1)m−1 

p1p2 · · · pn
1≤i<j≤m 1≤i<j<k≤m ⎛ ⎞ 

1 1 1 1 − · · · + (−1)m−1= n⎝ ⎠+ 
pi 
− 

pipj pipj pk p1p2 · · · pni=1 1≤i<j≤m 1≤i<j<k≤m 

But φ(n) = n − |S

m

φ(n) = n ⎝1 − 

⎛ | by definition, so ⎞ 
1 1 1 1 ⎠+ (−1)m 

pi 
+ 

pipj 
− 

pipj pk 
+ · · · 

p1p2 · · · pni=1 1≤i<j≤m 1≤i<j<k≤m 

= n 
m� 

i=1 

1
1 − (16.12). 

pi

Notice that in case n = pk for some prime, p, then (16.12) simplifies to 

1 
φ(p k) = p k 1 − k k−1= p − p 

p 

as claimed in chapter 14. 
Quick Question: Why does equation (16.12) imply that 

φ(ab) = φ(a)φ(b) 

for relatively prime integers a, b > 1, as claimed in Theorem 14.7.1.(a)? 

16.10.5 Problems 

Practice Problems 

Problem 16.22. 
The working days in the next year can be numbered 1, 2, 3, . . . , 300. I’d like to 
avoid as many as possible. 

• On even-numbered days, I’ll say I’m sick. 

• On days that are a multiple of 3, I’ll say I was stuck in traffic. 
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•	 On days that are a multiple of 5, I’ll refuse to come out from under the blan­
kets. 

In total, how many work days will I avoid in the coming year? 

Class Problems 

Problem 16.23. 
A certain company wants to have security for their computer systems. So they 
have given everyone a name and password. A length 10 word containing each of 
the characters: 

a, d, e, f, i, l, o, p, r, s, 

is called a cword. A password will be a cword which does not contain any of the 
subwords ”fails”, ”failed”, or ”drop”. 

For example, the following two words are passwords: 

adefiloprs, srpolifeda, 

but the following three cwords are not: 

adropeflis, failedrops, dropefails. 

(a) How many cwords contain the subword “drop”? 

(b) How many cwords contain both “drop” and “fails”? 

(c) Use the Inclusion-Exclusion Principle to find a simple formula for the number 
of passwords. 

Homework Problems 

Problem 16.24. 
How many paths are there from point (0, 0) to (50, 50) if every step increments 
one coordinate and leaves the other unchanged? How many are there when there 
are impassable boulders sitting at points (10, 11) and (21, 20)? (You do not have 
to calculate the number explicitly; your answer may be an expression involving 
binomial coefficients.) 

Hint: Count the number of paths going through (10, 11), the number through 
(21, 20), and use Inclusion-Exclusion. 

Problem 16.25. 
A derangement is a permutation (x1, x2, . . . , xn) of the set {1, 2, . . . , n} such that 
xi =� i for all i. For example, (2, 3, 4, 5, 1) is a derangement, but (2, 1, 3, 5, 4) is not 
because 3 appears in the third position. The objective of this problem is to count 
derangements. 
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It turns out to be easier to start by counting the permutations that are not de­
rangements. Let Si be the set of all permutations (x1, x2, . . . , xn) that are not de­
rangements because xi = i. So the set of non-derangements is 

n

 
Si. 

i=1 

(a) What is |Si|? 

(b) What is |Si ∩ Sj | where i =� j? 

(c) What is |Si1 ∩ Si2 ∩ · · · ∩ Sik | where i1, i2, . . . , ik are all distinct? 

(d) Use the inclusion-exclusion formula to express the number of non-derangements 
in terms of sizes of possible intersections of the sets S1, . . . , Sn. 

(e) How many terms in the expression in part (d) have the form |Si1 ∩ Si2 ∩ · · · ∩ Sik |? 

(f) Combine your answers to the preceding parts to prove the number of non-
derangements is: � �

1 1 1 1 
n! + .

1! 
− 

2! 3! 
− · · · ± 

n! 

Conclude that the number of derangements is 

1 1 1 1 
n! 1 − 

1! 
+ 

2! 
− 

3! 
+ · · · ± 

n! 
. 

(g) As n goes to infinity, the number of derangements approaches a constant frac­
tion of all permutations. What is that constant? Hint: 

e x = 1 + x + 
x2 

2! 
+ 

x3 

3! 
+ · · · 

Problem 16.26. 
How many of the numbers 2, . . . , n are prime? The Inclusion-Exclusion Principle 
offers a useful way to calculate the answer when n is large. Actually, we will use 
Inclusion-Exclusion to count the number of composite (nonprime) integers from 2 
to n. Subtracting this from n − 1 gives the number of primes. 

Let Cn be the set of composites from 2 to n, and let Am be the set of numbers 
in the range m + 1, . . . , n that are divisible by m. Notice that by definition, Am = ∅
for m ≥ n. So 

n−1

 
Cn = Ai. (16.13) 

i=2 

(a) Verify that if m | k, then Am ⊇ Ak. 
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(b) Explain why the right hand side of (16.13) equals 

 
Ap. (16.14) 

primes p≤
√

n 

(c) Explain why |Am| = �n/m� − 1 for m ≥ 2. 

(d) Consider any two relatively prime numbers p, q ≤ n. What is the one number 
in (Ap ∩ Aq) − Ap q? ·

(e) Let P be a finite set of at least two primes. Give a simple formula for 

Ap . 
p∈P 

(f) Use the Inclusion-Exclusion principle to obtain a formula for |C150| in terms 
the sizes of intersections among the sets A2, A3, A5, A7, A11. (Omit the intersections 
that are empty; for example, any intersection of more than three of these sets must 
be empty.) 

(g) Use this formula to find the number of primes up to 150. 

16.11 Binomial Theorem 

Counting gives insight into one of the basic theorems of algebra. A binomial is a 
sum of two terms, such as a + b. Now consider its 4th power, (a + b)4 . 

If we multiply out this 4th power expression completely, we get 

(a + b)4 = aaaa + aaab + aaba + aabb 
+ abaa + abab + abba + abbb 
+ baaa + baab + baba + babb 
+ bbaa + bbab + bbba + bbbb 

Notice that there is one term for every sequence of a’s and b’s. So there are 24 

terms, and the number of terms with k copies of b and n − k copies of a is: 

n! n 
= 

k! (n − k)! k 

by the Bookkeeper Rule. Now let’s group equivalent terms, such as aaab = aaba = 
abaa = baaa. Then the coefficient of an−kbk is n

k . So for n = 4, this means: 

4 4 4 44b0 + a 3b1 + a 2b2 + a 1b3 + a 0b4 

1 2 3 4 
4

(a + b)4 = a
0 
· · · · · 

In general, this reasoning gives the Binomial Theorem: 
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Theorem 16.11.1 (Binomial Theorem). For all n ∈ N and a, b ∈ R: 

n � � 

(a + b)n = 
n

a n−kbk 

k 
k=0 

n
The expression is often called a “binomial coefficient” in honor of its ap­

k 
pearance here. 

This reasoning about binomials extends nicely to multinomials, which are sums 
of two or more terms. For example, suppose we wanted the coefficient of 

bo2k2 e 3 pr 

in the expansion of (b+o +k +e+p+r)10. Each term in this expansion is a product 
of 10 variables where each variable is one of b, o, k, e, p, or r. Now, the coefficient 
of bo2k2e3pr is the number of those terms with exactly 1 b, 2 o’s, 2 k’s, 3 e’s, 1 p, and 
1 r. And the number of such terms is precisely the number of rearrangments of the 
word BOOKKEEPER: 

10 10! 
= .

1, 2, 2, 3, 1, 1 1! 2! 2! 3! 1! 1! 

The expression on the left is called a “multinomial coefficient.” This reasoning 
extends to a general theorem. 

Definition 16.11.2. For n, k1, . . . , km ∈ naturals, such that k1 + k2 + + km = n,· · · 
define the multinomial coefficient 

n n! 
::= . 

k1, k2, . . . , km k1! k2! . . . km! 

Theorem 16.11.3 (Multinomial Theorem). For all n ∈ N and z1, . . . zm ∈ R: 

� � 
n 

� 

)n = z k1 z k2 z km(z1 + z2 + · · · + zm
k1, k2, . . . , km 

1 2 · · · m 
k1,...,km∈N 

k1 + +km =n···

You’ll be better off remembering the reasoning behind the Multinomial Theo­
rem rather than this ugly formal statement. 

16.11.1 Problems 

Practice Problems 

Problem 16.27. 
Find the coefficients of x10y5 in (19x + 4y)15 
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Class Problems 

Problem 16.28. 
Find the coefficients of 
(a) x5 in (1 + x)11 

(b) x8y9 in (3x + 2y)17 

(c) a6b6 in (a2 + b3)5 

Problem 16.29. (a) Use the Multinomial Theorem 16.11.3 to prove that 

(x1 + x2 + + xn)p ≡ x1 
p + x2 

p + + xn
p (mod p) (16.15)· · · · · · 

for all primes p. (Do not prove it using Fermat’s “little” Theorem. The point of this 
problem is to offer an independent proof of Fermat’s theorem.) 

Hint: Explain why k1,k2

p
,...,kn 

is divisible by p if all the ki’s are positive integers 
less than p. 

(b) Explain how (16.15) immediately proves Fermat’s Little Theorem 14.6.4: np−1 ≡
1 (mod p) when n is not a multiple of p. 

Homework Problems 

Problem 16.30. 
The degree sequence of a simple graph is the weakly decreasing sequence of de­
grees of its vertices. For example, the degree sequence for the 5-vertex num­
bered tree pictured in the Figure 16.2 is (2, 2, 2, 1, 1) and for the 7-vertex tree it 
is (3, 3, 2, 1, 1, 1, 1). 

We’re interested in counting how many numbered trees there are with a given 
degree sequence. We’ll do this using the bijection defined in Problem 16.5 between 
n-vertex numbered trees and length n−2 code words whose characters are integers 
between 1 and n. 

The occurrence number for a character in a word is the number of times that 
the character occurs in the word. For example, in the word 65622, the occur­
rence number for 6 is two, and the occurrence number for 5 is one. The occurrence 
sequence of a word is the weakly decreasing sequence of occurrence numbers of 
characters in the word. The occurrence sequence for this word is (2, 2, 1) because 
it has two occurrences of each of the characters 6 and 2, and one occurrence of 5. 
(a) There is simple relationship between the degree sequence of an n-vertex num­

bered tree and the occurrence sequence of its code. Describe this relationship and 
explain why it holds. Conclude that counting n-vertex numbered trees with a 
given degree sequence is the same as counting the number of length n − 2 code 
words with a given occurrence sequence. 

Hint: How many times does a vertex of degree, d, occur in the code? 
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Figure 16.2: 

For simplicity, let’s focus on counting 9-vertex numbered trees with a given 
degree sequence. By part (a), this is the same as counting the number of length 7 
code words with a given occurrence sequence. 

Any length 7 code word has a pattern, which is another length 7 word over the 
alphabet a,b,c,d,e,f,g that has the same occurrence sequence. 
(b) How many length 7 patterns are there with three occurrences of a, two occur­

rences of b, and one occurrence of c and d? 
(c) How many ways are there to assign occurrence numbers to integers 1, 2, . . . , 9 

so that a code word with those occurrence numbers would have the occurrence 
sequence 3, 2, 1, 1, 0, 0, 0, 0, 0? 
In general, to find the pattern of a code word, list its characters in decreasing or­
der by number of occurrences, and list characters with the same number of occur­
rences in decreasing order. Then replace successive characters in the list by suc­
cessive letters a,b,c,d,e,f,g. The code word 2468751, for example, has the 
pattern fecabdg, which is obtained by replacing its characters 8,7,6,5,4,2,1 
by a,b,c,d,e,f,g, respectively. The code word 2449249 has pattern caabcab, 
which is obtained by replacing its characters 4,9,2 by a,b,c, respectively. 

Tree

1 2 3 4 5

1

2 6

5 4

73

4 3 2

6 5 6 2 2

Tree Code

Coding Numbered Trees

Image by MIT OpenCourseWare.
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(d) What length 7 code word has three occurrences of 7, two occurrences of 8, one 
occurrence each of 2 and 9, and pattern abacbad? 

(e) Explain why the number of 9-vertex numbered trees with degree sequence 
(4, 3, 2, 2, 1, 1, 1, 1, 1) is the product of the answers to parts (b) and (c). 

16.12 Combinatorial Proof 

Suppose you have n different T-shirts, but only want to keep k. You could equally 
well select the k shirts you want to keep or select the complementary set of n − k 
shirts you want to throw out. Thus, the number of ways to select k shirts from 
among n must be equal to the number of ways to select n − k shirts from among n. 
Therefore: � � � � 

n n 
= 

k n − k 

This is easy to prove algebraically, since both sides are equal to: 

n!

k! (n − k)!


But we didn’t really have to resort to algebra; we just used counting principles. 
Hmm. 

16.12.1 Boxing 

Jay, famed 6.042 TA, has decided to try out for the US Olympic boxing team. After 
all, he’s watched all of the Rocky movies and spent hours in front of a mirror sneer­
ing, “Yo, you wanna piece a’ me?!” Jay figures that n people (including himself) 
are competing for spots on the team and only k will be selected. As part of maneu­
vering for a spot on the team, he needs to work out how many different teams are 
possible. There are two cases to consider: 

•	 Jay is selected for the team, and his k − 1 teammates are selected from among 
the other n−1 competitors. The number of different teams that can be formed 
in this way is: 

n − 1 
k − 1 

•	 Jay is not selected for the team, and all k team members are selected from 
among the other n − 1 competitors. The number of teams that can be formed 
this way is: 

n − 1 
k 
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All teams of the first type contain Jay, and no team of the second type does; 
therefore, the two sets of teams are disjoint. Thus, by the Sum Rule, the total num­
ber of possible Olympic boxing teams is: 

n − 1
+ 

n − 1 
kk − 1 

Jeremy, equally-famed 6.042 TA, thinks Jay isn’t so tough and so he might as 
well also try out. He reasons that n people (including himself) are trying out for k 
spots. Thus, the number of ways to select the team is simply: 

n 
k 

Jeremy and Jay each correctly counted the number of possible boxing teams; 
thus, their answers must be equal. So we know: 

nn − 1
+ 

n − 1
= 

k kk − 1 

This is called Pascal’s Identity. And we proved it without any algebra! Instead, we 
relied purely on counting techniques. 

16.12.2 Finding a Combinatorial Proof 

A combinatorial proof is an argument that establishes an algebraic fact by relying on 
counting principles. Many such proofs follow the same basic outline: 

1. Define a set S. 

2. Show that |S| = n by counting one way. 

3. Show that |S| = m by counting another way. 

4. Conclude that n = m. 

In the preceding example, S was the set of all possible Olympic boxing teams. Jay 
computed � � � � 

n − 1 n − 1 |S| = 
k − 1

+ 
k 

by counting one way, and Jeremy computed 

n |S| = 
k 

by counting another. Equating these two expressions gave Pascal’s Identity. 
More typically, the set S is defined in terms of simple sequences or sets rather 

than an elaborate story. Here is less colorful example of a combinatorial argument. 
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Theorem 16.12.1. � �� � � �n� n 2n 3n 
= 

r n − r n 
r=0 

Proof. We give a combinatorial proof. Let S be all n-card hands that can be dealt 
from a deck containing n red cards (numbered 1, . . . , n) and 2n black cards (num­
bered 1, . . . , 2n). First, note that every 3n-element set has 

3n |S| = 
n 

n-element subsets. 
From another perspective, the number of hands with exactly r red cards is 

n 2n 
r n − r 

since there are n
r ways to choose the r red cards and n

2
−
n
r ways to choose the 

n − r black cards. Since the number of red cards can be anywhere from 0 to n, the 
total number of n-card hands is: 

n � �� �� n 2n |S| = 
r n − r 

r=0 

Equating these two expressions for |S| proves the theorem. � 

Combinatorial proofs are almost magical. Theorem 16.12.1 looks pretty scary, 
but we proved it without any algebraic manipulations at all. The key to construct­
ing a combinatorial proof is choosing the set S properly, which can be tricky. Gen­
erally, the simpler side of the equation should provide some guidance. For exam­
ple, the right side of Theorem 16.12.1 is 3

n
n , which suggests choosing S to be all 

n-element subsets of some 3n-element set. 

16.12.3 Problems 

Class Problems 

Problem 16.31. 
According to the Multinomial theorem, (w + x + y + z)n can be expressed as a sum 
of terms of the form � � 

n r1 r2 r3 r4w x y z . 
r1, r2, r3, r4 

(a) How many terms are there in the sum? 

(b) The sum of these multinomial coefficients has an easily expressed value. What 
is it? � �� n 

=? (16.16) 
r1, r2, r3, r4 r1+r2 +r3+r4=n, 

ri∈N 
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Hint: How many terms are there when (w + x + y + z)n is expressed as a sum of 
monomials in w, x, y, z before terms with like powers of these variables are collected 
together under a single coefficient? 

Homework Problems 

Problem 16.32. 
Prove the following identity by algebraic manipulation and by giving a combina­
torial argument: � �� � � �� � 

n r n n − k 
= 

r k k r − k 

Problem 16.33. (a) Find a combinatorial (not algebraic) proof that 

n � �� n 
= 2n . 

i 
i=0 

(b) Below is a combinatorial proof of an equation. What is the equation? 

Proof. Stinky Peterson owns n newts, t toads, and s slugs. Conveniently, he lives 
in a dorm with n + t + s other students. (The students are distinguishable, but 
creatures of the same variety are not distinguishable.) Stinky wants to put one 
creature in each neighbor’s bed. Let W be the set of all ways in which this can be 
done. 

On one hand, he could first determine who gets the slugs. Then, he could decide 
who among his remaining neighbors has earned a toad. Therefore, |W | is equal to 
the expression on the left. 

On the other hand, Stinky could first decide which people deserve newts and slugs 
and then, from among those, determine who truly merits a newt. This shows that 
|W | is equal to the expression on the right. 

Since both expressions are equal to |W |, they must be equal to each other. � 

(Combinatorial proofs are real proofs. They are not only rigorous, but also con­
vey an intuitive understanding that a purely algebraic argument might not reveal. 
However, combinatorial proofs are usually less colorful than this one.) 

Problem 16.34. 
According to the Multinomial Theorem 16.11.3, (x1+x2+...+xk)n can be expressed 
as a sum of terms of the form � � 

n 
x r1 

1 x r2 
2 ...x rk 

k . r1, r2, ..., rk 
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(a) How many terms are there in the sum? 

(b) The sum of these multinomial coefficients has an easily expressed value: 

� n 
= kn (16.17) 

r1, r2, ..., rk r1+r2+...+rk =n, 
ri∈N 

Give a combinatorial proof of this identity.


Hint: How many terms are there when (x1 + x2 + ... + xk)n is expressed as a sum

of monomials in xi before terms with like powers of these variables are collected

together under a single coefficient?


Problem 16.35. 
Give combinatorial proofs of the identities below. Use the following structure for 
each proof. First, define an appropriate set S. Next, show that the left side of 
the equation counts the number of elements in S. Then show that, from another 
perspective, the right side of the equation also counts the number of elements in 
set S. Conclude that the left side must be equal to the right, since both are equal to 
|S
(a)
|. � � n � � � �

2n � n n 
= 

n k 
· 

n − k 
k=0 

(b) 
r � � � �� n + i n + r + 1 

= 
i r 

i=0 

Hint: consider a set of binary strings that could be counted using the right side of 
the equation, then try partitioning them into subsets countable by the elements of 
the sum on the left. 
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