
Chapter 13

Communication Networks

13.1 Communication Networks

Modeling communication networks is an important application of digraphs in
computer science. In this such models, vertices represent computers, processors,
and switches; edges will represent wires, fiber, or other transmission lines through
which data flows. For some communication networks, like the internet, the corre­
sponding graph is enormous and largely chaotic. Highly structured networks, by
contrast, find application in telephone switching systems and the communication
hardware inside parallel computers. In this chapter, we’ll look at some of the nicest
and most commonly used structured networks.

13.2 Complete Binary Tree

Let’s start with a complete binary tree. Here is an example with 4 inputs and 4
outputs.

253

254 CHAPTER 13. COMMUNICATION NETWORKS

IN OUT IN IN INOUT OUT OUT0 0 1 1 2 2 3 3

The kinds of communication networks we consider aim to transmit packets of
data between computers, processors, telephones, or other devices. The term packet
refers to some roughly fixed-size quantity of data— 256 bytes or 4096 bytes or
whatever. In this diagram and many that follow, the squares represent terminals,
sources and destinations for packets of data. The circles represent switches, which
direct packets through the network. A switch receives packets on incoming edges
and relays them forward along the outgoing edges. Thus, you can imagine a data
packet hopping through the network from an input terminal, through a sequence
of switches joined by directed edges, to an output terminal.

Recall that there is a unique simple path between every pair of vertices in a tree.
So the natural way to route a packet of data from an input terminal to an output
in the complete binary tree is along the corresponding directed path. For example,
the route of a packet traveling from input 1 to output 3 is shown in bold.

13.3 Routing Problems

Communication networks are supposed to get packets from inputs to outputs,
with each packet entering the network at its own input switch and arriving at its
own output switch. We’re going to consider several different communication net­
work designs, where each network has N inputs and N outputs; for convenience,
we’ll assume N is a power of two.

Which input is supposed to go where is specified by a permutation of {0, 1, . . . , N − 1}.
So a permutation, π, defines a routing problem: get a packet that starts at input i to
output π(i). A routing, P , that solves a routing problem, π, is a set of paths from each
input to its specified output. That is, P is a set of n paths, Pi, for i = 0 . . . , N − 1,
where Pi goes from input i to output π(i).

255 13.4. NETWORK DIAMETER

13.4 Network Diameter

The delay between the time that a packets arrives at an input and arrives at its
designated output is a critical issue in communication networks. Generally this
delay is proportional to the length of the path a packet follows. Assuming it takes
one time unit to travel across a wire, the delay of a packet will be the number of
wires it crosses going from input to output.

Generally packets are routed to go from input to output by the shortest path
possible. With a shortest path routing, the worst case delay is the distance be­
tween the input and output that are farthest apart. This is called the diameter of
the network. In other words, the diameter of a network1 is the maximum length of
any shortest path between an input and an output. For example, in the complete
binary tree above, the distance from input 1 to output 3 is six. No input and output
are farther apart than this, so the diameter of this tree is also six.

More generally, the diameter of a complete binary tree with N inputs and out­
puts is 2 log N +2. (All logarithms in this lecture— and in most of computer science
—are base 2.) This is quite good, because the logarithm function grows very slowly.
We could connect up 210 = 1024 inputs and outputs using a complete binary tree
and the worst input-output delay for any packet would be this diameter, namely,
2 log(210) + 2 = 22.

13.4.1 Switch Size

One way to reduce the diameter of a network is to use larger switches. For exam­
ple, in the complete binary tree, most of the switches have three incoming edges
and three outgoing edges, which makes them 3 × 3 switches. If we had 4 × 4
switches, then we could construct a complete ternary tree with an even smaller di­
ameter. In principle, we could even connect up all the inputs and outputs via a
single monster N × N switch.

This isn’t very productive, however, since we’ve just concealed the original net­
work design problem inside this abstract switch. Eventually, we’ll have to design
the internals of the monster switch using simpler components, and then we’re right
back where we started. So the challenge in designing a communication network
is figuring out how to get the functionality of an N × N switch using fixed size,
elementary devices, like 3 × 3 switches.

13.5 Switch Count

Another goal in designing a communication network is to use as few switches as
possible. The number of switches in a complete binary tree is 1+2+4+8+ +N ,· · ·
since there is 1 switch at the top (the “root switch”), 2 below it, 4 below those, and

1The usual definition of diameter for a general graph (simple or directed) is the largest distance be­
tween any two vertices, but in the context of a communication network we’re only interested in the
distance between inputs and outputs, not between arbitrary pairs of vertices.

256 CHAPTER 13. COMMUNICATION NETWORKS

so forth. By the formula (6.5) for geometric sums, the total number of switches is
2N − 1, which is nearly the best possible with 3 × 3 switches.

13.6 Network Latency

We’ll sometimes be choosing routings through a network that optimize some quan­
tity besides delay. For example, in the next section we’ll be trying to minimize
packet congestion. When we’re not minimizing delay, shortest routings are not al­
ways the best, and in general, the delay of a packet will depend on how it is routed.
For any routing, the most delayed packet will be the one that follows the longest
path in the routing. The length of the longest path in a routing is called its latency.

The latency of a network depends on what’s being optimized. It is measured
by assuming that optimal routings are always chosen in getting inputs to their
specified outputs. That is, for each routing problem, π, we choose an optimal rout­
ing that solves π. Then network latency is defined to be the largest routing latency
among these optimal routings. Network latency will equal network diameter if
routings are always chosen to optimize delay, but it may be significantly larger if
routings are chosen to optimize something else.

For the networks we consider below, paths from input to output are uniquely
determined (in the case of the tree) or all paths are the same length, so network
latency will always equal network diameter.

13.7 Congestion

The complete binary tree has a fatal drawback: the root switch is a bottleneck. At
best, this switch must handle an enormous amount of traffic: every packet travel­
ing from the left side of the network to the right or vice-versa. Passing all these
packets through a single switch could take a long time. At worst, if this switch
fails, the network is broken into two equal-sized pieces.

For example, if the routing problem is given by the identity permutation, Id(i)::=
i, then there is an easy routing, P , that solves the problem: let Pi be the path from
input i up through one switch and back down to output i. On the other hand, if
the problem was given by π(i) ::= (N − 1) − i, then in any solution, Q, for π, each
path Qi beginning at input i must eventually loop all the way up through the root
switch and then travel back down to output (N − 1) − i. These two situations are
illustrated below.

257 13.8. 2-D ARRAY

IN OUT IN IN INOUT OUT OUT0 0 1 1 2 2 3 3 IN OUT IN IN INOUT OUT OUT0 0 1 1 2 2 3 3

We can distinguish between a “good” set of paths and a “bad” set based on
congestion. The congestion of a routing, P , is equal to the largest number of paths
in P that pass through a single switch. For example, the congestion of the routing
on the left is 1, since at most 1 path passes through each switch. However, the
congestion of the routing on the right is 4, since 4 paths pass through the root
switch (and the two switches directly below the root). Generally, lower congestion
is better since packets can be delayed at an overloaded switch.

By extending the notion of congestion to networks, we can also distinguish be­
tween “good” and “bad” networks with respect to bottleneck problems. For each
routing problem, π, for the network, we assume a routing is chosen that optimizes
congestion, that is, that has the minimum congestion among all routings that solve
π. Then the largest congestion that will ever be suffered by a switch will be the
maximum congestion among these optimal routings. This “maximin” congestion
is called the congestion of the network.

So for the complete binary tree, the worst permutation would be π(i) ::= (N −
1) − i. Then in every possible solution for π, every packet, would have to follow a
path passing through the root switch. Thus, the max congestion of the complete
binary tree is N —which is horrible!

Let’s tally the results of our analysis so far:

network diameter switch size # switches congestion
complete binary tree 2 log N + 2 N2N − 13 × 3

13.8 2-D Array

Let’s look at an another communication network. This one is called a 2-dimensional
array or grid.

258 CHAPTER 13. COMMUNICATION NETWORKS

IN

IN

IN

IN

0

1

2

3

OUT OUT OUT OUT
0 1 2 3

Here there are four inputs and four outputs, so N = 4.
The diameter in this example is 8, which is the number of edges between input

0 and output 3. More generally, the diameter of an array with N inputs and outputs
is 2N , which is much worse than the diameter of 2 log N +2 in the complete binary
tree. On the other hand, replacing a complete binary tree with an array almost
eliminates congestion.

Theorem 13.8.1. The congestion of an N -input array is 2.

Proof. First, we show that the congestion is at most 2. Let π be any permutation.
Define a solution, P , for π to be the set of paths, Pi, where Pi goes to the right from
input i to column π(i) and then goes down to output π(i). Thus, the switch in row
i and column j transmits at most two packets: the packet originating at input i and
the packet destined for output j.

Next, we show that the congestion is at least 2. This follows because in any
routing problem, π, where π(0) = 0 and π(N − 1) = N − 1, two packets must pass
through the lower left switch. �

As with the tree, the network latency when minimizing congestion is the same
as the diameter. That’s because all the paths between a given input and output are
the same length.

Now we can record the characteristics of the 2-D array.

diameter switch size # switches congestionnetwork
complete binary tree 2 log N + 2 N2N − 13 × 3

N22-D array 2N 22 × 2

The crucial entry here is the number of switches, which is N2. This is a major defect
of the 2-D array; a network of size N = 1000 would require a million 2×2 switches!
Still, for applications where N is small, the simplicity and low congestion of the
array make it an attractive choice.

2 inputs 2 outputs

N = 21N = 21

259 13.9. BUTTERFLY

13.9 Butterfly

The Holy Grail of switching networks would combine the best properties of the
complete binary tree (low diameter, few switches) and of the array (low conges­
tion). The butterfly is a widely-used compromise between the two.

A good way to understand butterfly networks is as a recursive data type. The
recursive definition works better if we define just the switches and their connec­
tions, omitting the terminals. So we recursively define Fn to be the switches and
connections of the butterfly net with N ::= 2n input and output switches.

The base case is F1 with 2 input switches and 2 output switches connected as
in Figure 13.1.

Figure 13.1: F1, the Butterfly Net switches with N = 21 .

In the constructor step, we construct Fn+1 with 2n+1 inputs and outputs out
of two Fn nets connected to a new set of 2n+1 input switches, as shown in as in
Figure 13.2. That is, the ith and 2n + ith new input switches are each connected
to the same two switches, namely, to the ith input switches of each of two Fn

components for i = 1, . . . , 2n . The output switches of Fn+1 are simply the output
switches of each of the Fn copies.

So Fn+1 is laid out in columns of height 2n+1 by adding one more column of
switches to the columns in Fn. Since the construction starts with two columns
when n = 1, the Fn+1 switches are arrayed in n + 1 columns. The total number
of switches is the height of the columns times the number of columns, namely,
2n+1(n +1). Remembering that n = log N , we conclude that the Butterfly Net with

⎧
⎨ F⎨
⎩

2n Fn

2n 1 t t⎩
⎧
⎨ F

2n+1 outputs

⎨
⎩

2n Fn

F
new inputs
⎩

Fn+1

260 CHAPTER 13. COMMUNICATION NETWORKS

Figure 13.2: Fn+1, the Butterfly Net switches with 2n+1 inputs and outputs.

N inputs has N (log N + 1) switches.
Since every path in Fn+1 from an input switch to an output is the same length,

namely, n + 1, the diameter of the Butterfly net with 2n+1 inputs is this length plus
two because of the two edges connecting to the terminals (square boxes) —one
edge from input terminal to input switch (circle) and one from output switch to
output terminal.

There is an easy recursive procedure to route a packet through the Butterfly
Net. In the base case, there is obviously only one way to route a packet from one of
the two inputs to one of the two outputs. Now suppose we want to route a packet
from an input switch to an output switch in Fn+1. If the output switch is in the
“top” copy of Fn, then the first step in the route must be from the input switch to
the unique switch it is connected to in the top copy; the rest of the route is deter­
mined by recursively routing the rest of the way in the top copy of Fn. Likewise,
if the output switch is in the “bottom” copy of Fn, then the first step in the route
must be to the switch in the bottom copy, and the rest of the route is determined by
recursively routing in the bottom copy of Fn. In fact, this argument shows that the
routing is unique: there is exactly one path in the Butterfly Net from each input to
each output, which implies that the network latency when minimizing congestion
is the same as the diameter.

13.10. BENE ̆S NETWORK 261

The congestion of the butterfly network is about
√

N , more precisely, the con­
gestion is

√
N if N is an even power of 2 and

�
N/2 if N is an odd power of 2. A

simple proof of this appears in Problem13.8.
Let’s add the butterfly data to our comparison table:

network diameter switch size # switches congestion
complete binary tree 2 log N + 2 N2N − 13 × 3

N22-D array 2N 22 × 2
butterfly log N + 2 N(log(N) + 1)

√
N or

�
N/22 × 2

The butterfly has lower congestion than the complete binary tree. And it uses
fewer switches and has lower diameter than the array. However, the butterfly
does not capture the best qualities of each network, but rather is a compromise
somewhere between the two. So our quest for the Holy Grail of routing networks
goes on.

13.10 Benes̆ Network

In the 1960’s, a researcher at Bell Labs named Benes̆ had a remarkable idea. He
obtained a marvelous communication network with congestion 1 by placing two
butterflies back-to-back. This amounts to recursively growing Benes̆ nets by adding
both inputs and outputs at each stage. Now we recursively define Bn to be the
switches and connections (without the terminals) of the Benes̆ net with N ::= 2n

input and output switches.
The base case, B1, with 2 input switches and 2 output switches is exactly the

same as F1 in Figure 13.1.
In the constructor step, we construct Bn+1 out of two Bn nets connected to a

new set of 2n+1 input switches and also a new set of 2n+1 output switches. This is
illustrated in Figure 13.3.

Namely, the ith and 2n + ith new input switches are each connected to the same
two switches, namely, to the ith input switches of each of two Bn components for
i = 1, . . . , 2n, exactly as in the Butterfly net. In addition, the ith and 2n + ith new
output switches are connected to the same two switches, namely, to the ith output
switches of each of two Bn components.

Now Bn+1 is laid out in columns of height 2n+1 by adding two more columns
of switches to the columns in Bn. So the Bn+1 switches are arrayed in 2(n + 1)
columns. The total number of switches is the number of columns times the height
of the columns, namely, 2(n + 1)2n+1 .

All paths in Bn+1 from an input switch to an output are the same length,
namely, 2(n + 1) − 1, and the diameter of the Benes̆ net with 2n+1 inputs is this
length plus two because of the two edges connecting to the terminals.

So Benes̆ has doubled the number of switches and the diameter, of course, but
completely eliminates congestion problems! The proof of this fact relies on a clever
induction argument that we’ll come to in a moment. Let’s first see how the Benes̆

262 CHAPTER 13. COMMUNICATION NETWORKS

⎧ ⎫⎧
⎨
⎩

2n ⎫
⎪

Bn

⎩
⎧

⎪
⎬
⎪

2n+1

⎧
⎨
⎩

2n ⎪
⎭

Bn

⎩ ⎭
Bnew inputs new outputsBn+1

p p

Figure 13.3: Bn+1, the Benes̆ Net switches with 2n+1 inputs and outputs.

network stacks up:

network diameter switch size # switches congestion
complete binary tree

2-D array
butterfly

Benes̆

2 log N + 2

2N

log N + 2

2 log N + 1

3 × 3
2 × 2
2 × 2
2 × 2

2N − 1

N2

N(log(N) + 1)

2N log N

N
2 √

N or
�

N/2
1

The Benes̆ network has small size and diameter, and completely eliminates con­
gestion. The Holy Grail of routing networks is in hand!

Theorem 13.10.1. The congestion of the N -input Benes̆ network is 1.

Proof. By induction on n where N = 2n. So the induction hypothesis is

13.10. BENE ̆S NETWORK 263

P (n) ::= the congestion of Bn is 1.

Base case (n = 1): B1 = F1 and the unique routings in F1 have congestion 1.
Inductive step: We assume that the congestion of an N = 2n-input Benes̆ net­

work is 1 and prove that the congestion of a 2N -input Benes̆ network is also 1.
Digression. Time out! Let’s work through an example, develop some intu­

ition, and then complete the proof. In the Benes̆ network shown below with N = 8
inputs and outputs, the two 4-input/output subnetworks are in dashed boxes.

OUT

OUT

OUT

OUT

OUT

OUT0

1

OUT3

2OUT

4

5

6

7

IN

IN

IN

IN

IN

IN

IN

IN

0

1

2

3

4

5

6

7

By the inductive assumption, the subnetworks can each route an arbitrary per­
mutation with congestion 1. So if we can guide packets safely through just the first
and last levels, then we can rely on induction for the rest! Let’s see how this works
in an example. Consider the following permutation routing problem:

π(0) = 1 π(4) = 3

π(1) = 5 π(5) = 6

π(2) = 4 π(6) = 0

π(3) = 7 π(7) = 2

We can route each packet to its destination through either the upper subnet­
work or the lower subnetwork. However, the choice for one packet may constrain
the choice for another. For example, we can not route both packet 0 and packet 4
through the same network since that would cause two packets to collide at a single
switch, resulting in congestion. So one packet must go through the upper network
and the other through the lower network. Similarly, packets 1 and 5, 2 and 6, and 3

264 CHAPTER 13. COMMUNICATION NETWORKS

and 7 must be routed through different networks. Let’s record these constraints in
a graph. The vertices are the 8 packets. If two packets must pass through different
networks, then there is an edge between them. Thus, our constraint graph looks
like this:

1

2

3

4

5

6

7

0

Notice that at most one edge is incident to each vertex.
The output side of the network imposes some further constraints. For example,

the packet destined for output 0 (which is packet 6) and the packet destined for
output 4 (which is packet 2) can not both pass through the same network; that
would require both packets to arrive from the same switch. Similarly, the packets
destined for outputs 1 and 5, 2 and 6, and 3 and 7 must also pass through different
switches. We can record these additional constraints in our graph with gray edges:

1

2

3

4

5

6

7

0

Notice that at most one new edge is incident to each vertex. The two lines
drawn between vertices 2 and 6 reflect the two different reasons why these packets
must be routed through different networks. However, we intend this to be a simple
graph; the two lines still signify a single edge.

Now here’s the key insight: a 2-coloring of the graph corresponds to a solution to
the routing problem. In particular, suppose that we could color each vertex either
red or blue so that adjacent vertices are colored differently. Then all constraints
are satisfied if we send the red packets through the upper network and the blue
packets through the lower network.

The only remaining question is whether the constraint graph is 2-colorable,
which is easy to verify:

13.10. BENE ̆S NETWORK 265

Lemma 13.10.2. Prove that if the edges of a graph can be grouped into two sets such that
every vertex has at most 1 edge from each set incident to it, then the graph is 2-colorable.

Proof. Since the two sets of edges may overlap, let’s call an edge that is in both sets
a doubled edge.

We know from Theorem 10.6.2 that all we have to do is show that every cycle
has even length. There are two cases:

Case 1: [The cycle contains a doubled edge.] No other edge can be incident
to either of the endpoints of a doubled edge, since that endpoint would then be
incident to two edges from the same set. So a cycle traversing a doubled edge has
nowhere to go but back and forth along the edge an even number of times.

Case 2: [No edge on the cycle is doubled.] Since each vertex is incident to
at most one edge from each set, any path with no doubled edges must traverse
successive edges that alternate from one set to the other. In particular, a cycle must
traverse a path of alternating edges that begins and ends with edges from different
sets. This means the cycle has to be of even length. �

For example, here is a 2-coloring of the constraint graph:

1

2

3

4

5

6

7

0

redblue

red

red

red

blueblue

blue

The solution to this graph-coloring problem provides a start on the packet rout­
ing problem:

We can complete the routing in the two smaller Benes̆ networks by induction!
Back to the proof. End of Digression.

Let π be an arbitrary permutation of {0, 1, . . . , N − 1}. Let G be the graph
whose vertices are packet numbers 0, 1, . . . , N − 1 and whose edges come from
the union of these two sets:

E1::= {u—v | |u − v| = N/2} , and
E2::= {u—w | |π(u) − π(w)| = N/2} .

Now any vertex, u, is incident to at most two edges: a unique edge u—v ∈ E1 and
a unique edge u—w ∈ E2. So according to Lemma 13.10.2, there is a 2-coloring
for the vertices of G. Now route packets of one color through the upper subnet­
work and packets of the other color through the lower subnetwork. Since for each

266 CHAPTER 13. COMMUNICATION NETWORKS

edge in E1, one vertex goes to the upper subnetwork and the other to the lower
subnetwork, there will not be any conflicts in the first level. Since for each edge
in E2, one vertex comes from the upper subnetwork and the other from the lower
subnetwork, there will not be any conflicts in the last level. We can complete the
routing within each subnetwork by the induction hypothesis P (n). �

13.10.1 Problems

Exam Problems

Problem 13.1.
Consider the following communication network:

IN0 IN1 IN2

OUT0 OUT1 OUT2

(a) What is the max congestion?

(b)	 Give an input/output permutation, π0, that forces maximum congestion:

π0(0) = π0(1) = π0(2) =

(c) Give an input/output permutation, π1, that allows minimum congestion:

π1(0) = π1(1) = π1(2) =

(d) What is the latency for the permutation π1? (If you could not find π1, just
choose a permutation and find its latency.)

Class Problems

Problem 13.2.
The Benes̆ network has a max congestion of 1; that is, every permutation can be
routed in such a way that a single packet passes through each switch. Let’s work
through an example. A Benes̆ network of size N = 8 is attached.
(a) Within the Benes̆ network of size N = 8, there are two subnetworks of size

N = 4. Put boxes around these. Hereafter, we’ll refer to these as the upper and
lower subnetworks.

13.10. BENE ̆S NETWORK 267

(b) Now consider the following permutation routing problem:

π(0) = 3 π(4) = 2

π(1) = 1 π(5) = 0

π(2) = 6 π(6) = 7

π(3) = 5 π(7) = 4

Each packet must be routed through either the upper subnetwork or the lower
subnetwork. Construct a graph with vertices 0, 1, . . . , 7 and draw a dashed edge
between each pair of packets that can not go through the same subnetwork because
a collision would occur in the second column of switches.

(c) Add a solid edge in your graph between each pair of packets that can not go
through the same subnetwork because a collision would occur in the next-to-last
column of switches.

(d) Color the vertices of your graph red and blue so that adjacent vertices get
different colors. Why must this be possible, regardless of the permutation π?

(e) Suppose that red vertices correspond to packets routed through the upper
subnetwork and blue vertices correspond to packets routed through the lower sub­
network. On the attached copy of the Benes̆ network, highlight the first and last
edge traversed by each packet.

(f) All that remains is to route packets through the upper and lower subnetworks.
One way to do this is by applying the procedure described above recursively on
each subnetwork. However, since the remaining problems are small, see if you can
complete all the paths on your own.

268 CHAPTER 13. COMMUNICATION NETWORKS

O
U

T

O
U

T

O
U

T

O
U

T

O
U

T

O
U

T
0 1

O
U

T
32

O
U

T

4 5 6 7

ININININ IN ININ IN

0 1 2 3 4 5 6 7

13.10. BENE ̆S NETWORK 269

Problem 13.3.
A multiple binary-tree network has n inputs and n outputs, where n is a power of 2.
Each input is connected to the root of a binary tree with n/2 leaves and with edges
pointing away from the root. Likewise, each output is connected to the root of a
binary tree with n/2 leaves and with edges pointing toward the root.

Two edges point from each leaf of an input tree, and each of these edges points
to a leaf of an output tree. The matching of leaf edges is arranged so that for every
input and output tree, there is an edge from a leaf of the input tree to a leaf of the
output tree, and every output tree leaf has exactly two edges pointing to it.
(a) Draw such a multiple binary-tree net for n = 4.

(b) Fill in the table, and explain your entries.

switches switch size diameter max congestion

Problem 13.4.
The n-input 2-D Array network was shown to have congestion 2. An n-input 2­
Layer Array consisting of two n-input 2-D Arrays connected as pictured below for
n = 4.

IN0

IN1

IN2

IN3

OUT0 OUT1 OUT2 OUT3

In general, an n-input 2-Layer Array has two layers of switches, with each layer
connected like an n-input 2-D Array. There is also an edge from each switch in the
first layer to the corresponding switch in the second layer. The inputs of the 2­
Layer Array enter the left side of the first layer, and the n outputs leave from the
bottom row of either layer.
(a) For any given input-output permutation, there is a way to route packets that

achieves congestion 1. Describe how to route the packets in this way.

(b) What is the latency of a routing designed to minimize latency?

270 CHAPTER 13. COMMUNICATION NETWORKS

(c) Explain why the congestion of any minimum latency (CML) routing of pack­
ets through this network is greater than the network’s congestion.

Problem 13.5.
A 5-path communication network is shown below. From this, it’s easy to see what
an n-path network would be. Fill in the table of properties below, and be prepared
to justify your answers.

IN0 IN1 IN2 IN3 IN4

OUT0 OUT1 OUT2 OUT3 OUT4

5-Path

network # switches switch size diameter max congestion
5-path
n-path

Problem 13.6.
Tired of being a TA, Megumi has decided to become famous by coming up with a
new, better communication network design. Her network has the following spec­
ifications: every input node will be sent to a Butterfly network, a Benes network
and a 2D Grid network. At the end, the outputs of all three networks will converge
on the new output.

In the Megumi-net a minimum latency routing does not have minimum con­
gestion. The latency for min-congestion (LMC) of a net is the best bound on latency
achievable using routings that minimize congestion. Likewise, the congestion for
min-latency (CML) is the best bound on congestion achievable using routings that
minimize latency.

13.10. BENE ̆S NETWORK 271

...
...

...

...

...

...

...

...

...
...

I1

I2

I3

IN

O1

O2

O3

ON

Butterfly

Benes

2-D

Fill in the following chart for Megumi’s new net and explain your answers.

network diameter # switches congestion LMC CML
Megumi’s net

Homework Problems

Problem 13.7.
Louis Reasoner figures that, wonderful as the Benes̆ network may be, the butterfly
network has a few advantages, namely: fewer switches, smaller diameter, and an
easy way to route packets through it. So Louis designs an N -input/output net­
work he modestly calls a Reasoner-net with the aim of combining the best features
of both the butterfly and Benes̆ nets:

The ith input switch in a Reasoner-net connects to two switches, ai and
bi, and likewise, the jth output switch has two switches, yj and zj ,
connected to it. Then the Reasoner-net has an N -input Benes̆ network
connected using the ai switches as input switches and the yj switches
as its output switches. The Reasoner-net also has an N -input butterfly
net connected using the bi switches as inputs and¡ the zj switches as
outputs.

In the Reasoner-net a minimum latency routing does not have minimum con­
gestion. The latency for min-congestion (LMC) of a net is the best bound on latency
achievable using routings that minimize congestion. Likewise, the congestion for
min-latency (CML) is the best bound on congestion achievable using routings that
minimize latency.

272 CHAPTER 13. COMMUNICATION NETWORKS

Fill in the following chart for the Reasoner-net and briefly explain your an­
swers.

diameter switch size(s) # switches congestion LMC CML

Problem 13.8.
Show that the congestion of the butterfly net, Fn, is exactly

√
N when n is even.

Hint:

•	 There is a unique path from each input to each output, so the congestion is
the maximum number of messages passing through a vertex for any routing
problem.

•	 If v is a vertex in column i of the butterfly network, there is a path from ex­
actly 2i input vertices to v and a path from v to exactly 2n−i output vertices.

•	 At which column of the butterfly network must the congestion be worst?
What is the congestion of the topmost switch in that column of the network?

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

