
Chapter 10 

Simple Graphs 

Graphs in which edges are not directed are called simple graphs. They come up in 
all sorts of applications, including scheduling, optimization, communications, and 
the design and analysis of algorithms. Two Stanford students even used graph 
theory to become multibillionaires! 

But we’ll start with an application designed to get your attention: we are going 
to make a professional inquiry into sexual behavior. Namely, we’ll look at some 
data about who, on average, has more opposite-gender partners, men or women. 

Sexual demographics have been the subject of many studies. In one of the 
largest, researchers from the University of Chicago interviewed a random sample 
of 2500 people over several years to try to get an answer to this question. Their 
study, published in 1994, and entitled The Social Organization of Sexuality found 
that on average men have 74% more opposite-gender partners than women. 

Other studies have found that the disparity is even larger. In particular, ABC 
News claimed that the average man has 20 partners over his lifetime, and the aver­
age woman has 6, for a percentage disparity of 233%. The ABC News study, aired 
on Primetime Live in 2004, purported to be one of the most scientific ever done, 
with only a 2.5% margin of error. It was called ”American Sex Survey: A peek 
between the sheets,” —which raises some question about the seriousness of their 
reporting. 

Yet again, in August, 2007, the N.Y. Times reported on a study by the National 
Center for Health Statistics of the U.S. government showing that men had seven 
partners while women had four. Anyway, whose numbers do you think are more 
accurate, the University of Chicago, ABC News, or the National Center? —don’t 
answer; this is a setup question like “When did you stop beating your wife?” Using 
a little graph theory, we’ll explain why none of these findings can be anywhere 
near the truth. 
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10.1 Degrees & Isomorphism 

10.1.1 Definition of Simple Graph 

Informally, a graph is a bunch of dots with lines connecting some of them. Here is 
an example: 

A

B

C

D

E

F

G

H

I

For many mathematical purposes, we don’t really care how the points and lines 
are laid out —only which points are connected by lines. The definition of simple 
graphs aims to capture just this connection data. 

Definition 10.1.1. A simple graph, G, consists of a nonempty set, V , called the ver­
tices of G, and a collection, E, of two-element subsets of V . The members of E are 
called the edges of G. 

The vertices correspond to the dots in the picture, and the edges correspond to 
the lines. For example, the connection data given in the diagram above can also be 
given by listing the vertices and edges according to the official definition of simple 
graph: 

V = {A, B, C, D, E, F,G, H, I}
E = {{A, B} , {A, C} , {B, D} , {C, D} , {C, E} , {E,F } , {E,G} , {H, I}} . 

It will be helpful to use the notation A—B for the edge {A, B}. Note that A—B 
and B—A are different descriptions of the same edge, since sets are unordered. 

So the definition of simple graphs is the same as for directed graphs, except 
that instead of a directed edge v w which starts at vertex v and ends at vertex → 
w, a simple graph only has an undirected edge, v—w, that connects v and w. 

Definition 10.1.2. Two vertices in a simple graph are said to be adjacent if they are 
joined by an edge, and an edge is said to be incident to the vertices it joins. The 
number of edges incident to a vertex is called the degree of the vertex; equivalently, 
the degree of a vertex is equals the number of vertices adjacent to it. 

For example, in the simple graph above, A is adjacent to B and B is adjacent to 
D, and the edge A—C is incident to vertices A and C. Vertex H has degree 1, D 
has degree 2, and E has degree 3. 
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Graph Synonyms 

A synonym for “vertices” is “nodes,” and we’ll use these words interchangeably. 
Simple graphs are sometimes called networks, edges are sometimes called arcs. We 
mention this as a “heads up” in case you look at other graph theory literature; we 
won’t use these words. 

Some technical consequences of Definition 10.1.1 are worth noting right from 
the start: 

1. Simple graphs do not have self-loops ({a, a} is not an undirected edge be­
cause an undirected edge is defined to be a set of two vertices.) 

2. There is at most one edge between two vertices of a simple graph. 

3. Simple graphs have at least one vertex, though they might not have any 
edges. 

There’s no harm in relaxing these conditions, and some authors do, but we don’t 
need self-loops, multiple edges between the same two vertices, or graphs with no 
vertices, and it’s simpler not to have them around. 

For the rest of this Chapter we’ll only be considering simple graphs, so we’ll 
just call them “graphs” from now on. 

10.1.2 Sex in America 

Let’s model the question of heterosexual partners in graph theoretic terms. To do 
this, we’ll let G be the graph whose vertices, V , are all the people in America. 
Then we split V into two separate subsets: M , which contains all the males, and F , 
which contains all the females.1 We’ll put an edge between a male and a female iff 
they have been sexual partners. This graph is pictured in Figure 10.1 with males 
on the left and females on the right. 

M W

Figure 10.1: The sex partners graph 

1For simplicity, we’ll ignore the possibility of someone being both, or neither, a man and a woman. 
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Actually, this is a pretty hard graph to figure out, let alone draw. The graph 
is enormous: the US population is about 300 million, so V ≈ 300M . Of these, 
approximately 50.8% are female and 49.2% are male, so |M

|
|
|
≈ 147.6M , and |F | ≈

152.4M . And we don’t even have trustworthy estimates of how many edges there 
are, let alone exactly which couples are adjacent. But it turns out that we don’t 
need to know any of this —we just need to figure out the relationship between 
the average number of partners per male and partners per female. To do this, 
we note that every edge is incident to exactly one M vertex (remember, we’re only 
considering male-female relationships); so the sum of the degrees of the M vertices 
equals the number of edges. For the same reason, the sum of the degrees of the F 
vertices equals the number of edges. So these sums are equal: 

deg (x) = deg (y) . 
x∈M y∈F 

Now suppose we divide both sides of this equation by the product of the sizes of 
the two sets, |M | · |F |: �� � �� � 

x∈M deg (x) 1 y∈F deg (y) 1 
= 

|M | 
·
|F | |F | 

·
|M | 

The terms above in parentheses are the average degree of an M vertex and the average 
degree of a F vertex. So we know: 

Avg. deg in M = 
|F | 

Avg. deg in F 
|M |
· 

In other words, we’ve proved that the average number of female partners of 
males in the population compared to the average number of males per female is 
determined solely by the relative number of males and females in the population. 

Now the Census Bureau reports that there are slightly more females than males 
in America; in particular |F | / |M | is about 1.035. So we know that on average, 
males have 3.5% more opposite-gender partners than females, and this tells us 
nothing about any sex’s promiscuity or selectivity. Rather, it just has to do with the 
relative number of males and females. Collectively, males and females have the 
same number of opposite gender partners, since it takes one of each set for every 
partnership, but there are fewer males, so they have a higher ratio. This means 
that the University of Chicago, ABC, and the Federal government studies are way 
off. After a huge effort, they gave a totally wrong answer. 

There’s no definite explanation for why such surveys are consistently wrong. 
One hypothesis is that males exaggerate their number of partners —or maybe fe­
males downplay theirs —but these explanations are speculative. Interestingly, the 
principal author of the National Center for Health Statistics study reported that 
she knew the results had to be wrong, but that was the data collected, and her job 
was to report it. 

The same underlying issue has led to serious misinterpretations of other survey 
data. For example, a couple of years ago, the Boston Globe ran a story on a survey 
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of the study habits of students on Boston area campuses. Their survey showed 
that on average, minority students tended to study with non-minority students 
more than the other way around. They went on at great length to explain why this 
“remarkable phenomenon” might be true. But it’s not remarkable at all —using 
our graph theory formulation, we can see that all it says is that there are fewer 
minority students than non-minority students, which is, of course what “minority” 
means. 

10.1.3 Handshaking Lemma 

The previous argument hinged on the connection between a sum of degrees and 
the number edges. There is a simple connection between these in any graph: 

Lemma 10.1.3. The sum of the degrees of the vertices in a graph equals twice the number 
of edges. 

Proof. Every edge contributes two to the sum of the degrees, one for each of its 
endpoints. � 

Lemma 10.1.3 is sometimes called the Handshake Lemma: if we total up the num­
ber of people each person at a party shakes hands with, the total will be twice the 
number of handshakes that occurred. 

10.1.4 Some Common Graphs 

Some graphs come up so frequently that they have names. The complete graph on n 
vertices, also called Kn, has an edge between every two vertices. Here is K5: 

The empty graph has no edges at all. Here is the empty graph on 5 vertices: 
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Another 5 vertex graph is L4, the line graph of length four: 

And here is C5, a simple cycle with 5 vertices: 

10.1.5 Isomorphism 

Two graphs that look the same might actually be different in a formal sense. For 
example, the two graphs below are both simple cycles with 4 vertices: 

A B

CD

1 2

34
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But one graph has vertex set {A, B,C, D} while the other has vertex set {1, 2, 3, 4}. 
If so, then the graphs are different mathematical objects, strictly speaking. But this 
is a frustrating distinction; the graphs look the same! 

Fortunately, we can neatly capture the idea of “looks the same” by adapting 
Definition 7.2.1 of isomorphism of digraphs to handle simple graphs. 

Definition 10.1.4. If G1 is a graph with vertices, V1, and edges, E1, and likewise 
for G2, then G1 is isomorphic to G2 iff there exists a bijection, f : V1 → V2, such that 
for every pair of vertices u, v ∈ V1: 

u—v ∈ E1 iff f(u)—f(v) ∈ E2. 

The function f is called an isomorphism between G1 and G2. 

For example, here is an isomorphism between vertices in the two graphs above: 

A corresponds to 1 B corresponds to 2

D corresponds to 4 C corresponds to 3.


You can check that there is an edge between two vertices in the graph on the left if 
and only if there is an edge between the two corresponding vertices in the graph 
on the right. 

Two isomorphic graphs may be drawn very differently. For example, here are 
two different ways of drawing C5: 

Isomorphism preserves the connection properties of a graph, abstracting out 
what the vertices are called, what they are made out of, or where they appear in a 
drawing of the graph. More precisely, a property of a graph is said to be preserved 
under isomorphism if whenever G has that property, every graph isomorphic to G 
also has that property. For example, since an isomorphism is a bijection between 
sets of vertices, isomorphic graphs must have the same number of vertices. What’s 
more, if f is a graph isomorphism that maps a vertex, v, of one graph to the ver­
tex, f(v), of an isomorphic graph, then by definition of isomorphism, every vertex 
adjacent to v in the first graph will be mapped by f to a vertex adjacent to f(v) 
in the isomorphic graph. That is, v and f(v) will have the same degree. So if one 
graph has a vertex of degree 4 and another does not, then they can’t be isomorphic. 
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In fact, they can’t be isomorphic if the number of degree 4 vertices in each of the 
graphs is not the same. 

Looking for preserved properties can make it easy to determine that two graphs 
are not isomorphic, or to actually find an isomorphism between them, if there is 
one. In practice, it’s frequently easy to decide whether two graphs are isomorphic. 
However, no one has yet found a general procedure for determining whether two 
graphs are isomorphic that is guaranteed to run much faster than an exhaustive 
(and exhausting) search through all possible bijections between their vertices. 

Having an efficient procedure to detect isomorphic graphs would, for example, 
make it easy to search for a particular molecule in a database given the molecular 
bonds. On the other hand, knowing there is no such efficient procedure would 
also be valuable: secure protocols for encryption and remote authentication can be 
built on the hypothesis that graph isomorphism is computationally exhausting. 

10.1.6 Problems 

Class Problems 

Problem 10.1. (a) Prove that in every graph, there are an even number of vertices 
of odd degree. 

Hint: The Handshaking Lemma 10.1.3. 

(b) Conclude that at a party where some people shake hands, the number of peo­
ple who shake hands an odd number of times is an even number. 

(c) Call a sequence of two or more different people at the party a handshake se­
quence if, except for the last person, each person in the sequence has shaken hands 
with the next person in the sequence. 

Suppose George was at the party and has shaken hands with an odd number of 
people. Explain why, starting with George, there must be a handshake sequence 
ending with a different person who has shaken an odd number of hands. 

Hint: Just look at the people at the ends of handshake sequences that start with 
George. 

Problem 10.2. 
For each of the following pairs of graphs, either define an isomorphism between 
them, or prove that there is none. (We write ab as shorthand for a—b.) 

(a) 

G1 with V1 = {1, 2, 3, 4, 5, 6} , E1 = {12, 23, 34, 14, 15, 35, 45}
G2 with V2 = {1, 2, 3, 4, 5, 6} , E2 = {12, 23, 34, 45, 51, 24, 25} 
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(b) 

G3 with V3 = {1, 2, 3, 4, 5, 6} , E3 = {12, 23, 34, 14, 45, 56, 26}

G4 with V4 = {a, b, c, d, e, f} , E4 = {ab, bc, cd, de, ae, ef, cf}


(c) 

G5 with V5 = {a, b, c, d, e, f, g, h} , E5 = {ab, bc, cd, ad, ef, fg, gh, he, dh, bf}
G6 with V6 = {s, t, u, v, w, x, y, z} , E6 = {st, tu, uv, sv, wx, xy, yz, wz, sw, vz} 

Homework Problems 

Problem 10.3. 
Determine which among the four graphs pictured in the Figures are isomorphic. 
If two of these graphs are isomorphic, describe an isomorphism between them. If 
they are not, give a property that is preserved under isomorphism such that one 
graph has the property, but the other does not. For at least one of the properties 
you choose, prove that it is indeed preserved under isomorphism (you only need 
prove one of them). 

1

2

34

5
6

7

8 9

10

1

2

34

5
6

7

8

9

10

(a) G1 (b) G2 

1

2

3

4
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7

8

9
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(c) G3 (d) G4 

Figure 10.2: Which graphs are isomorphic? 
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Problem 10.4. (a) For any vertex, v, in a graph, let N(v) be the set of neighbors of 
v, namely, the vertices adjacent to v: 

N(v) ::= {u | u—v is an edge of the graph} . 

Suppose f is an isomorphism from graph G to graph H . Prove that f(N(v)) = 
N(f(v)). 

Your proof should follow by simple reasoning using the definitions of isomor­
phism and neighbors —no pictures or handwaving. 

Hint: Prove by a chain of iff’s that 

h ∈ N(f(v)) iff h ∈ f(N(v)) 

for every h ∈ VH . Use the fact that h = f(u) for some u ∈ VG. 

(b) Conclude that if G and H are isomorphic graphs, then for each k ∈ N, they 
have the same number of degree k vertices. 

Problem 10.5. 
Let’s say that a graph has “two ends” if it has exactly two vertices of degree 1 and 
all its other vertices have degree 2. For example, here is one such graph: 

(a) A line graph is a graph whose vertices can be listed in a sequence with edges 
between consecutive vertices only. So the two-ended graph above is also a line 
graph of length 4. 

Prove that the following theorem is false by drawing a counterexample. 
False Theorem. Every two-ended graph is a line graph. 

(b) Point out the first erroneous statement in the following alleged proof of the 
false theorem. Describe the error as best you can. 

False proof. We use induction. The induction hypothesis is that every two-ended 
graph with n edges is a path. 

Base case (n = 1): The only two-ended graph with a single edge consists of two 
vertices joined by an edge: 



� 
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Sure enough, this is a line graph.


Inductive case: We assume that the induction hypothesis holds for some n ≥ 1

and prove that it holds for n + 1. Let Gn be any two-ended graph with n edges.

By the induction assumption, Gn is a line graph. Now suppose that we create a

two-ended graph Gn+1 by adding one more edge to Gn. This can be done in only

one way: the new edge must join an endpoint of Gn to a new vertex; otherwise,

Gn+1 would not be two-ended.


Gn

new edge

Clearly, Gn+1 is also a line graph. Therefore, the induction hypothesis holds for all 
graphs with n + 1 edges, which completes the proof by induction. 

Exam Problems 

Problem 10.6. 
There are four isomorphisms between these two graphs. List them. 

Problem 10.7. 
A researcher analyzing data on heterosexual sexual behavior in a group of m males 
and f females found that within the group, the male average number of female 
partners was 10% larger that the female average number of male partners. 
(a) Circle all of the assertions below that are implied by the above information on 

average numbers of partners: 
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(i) males exaggerate their number of female partners 

(ii) m = (9/10)f 

(iii) m = (10/11)f 

(iv) m = (11/10)f 

(v) there cannot be a perfect matching with each male matched to one of his fe­
male partners 

(vi) there cannot be a perfect matching with each female matched to one of her 
male partners 

(b) The data shows that approximately 20% of the females were virgins, while 
only 5% of the males were. The researcher wonders how excluding virgins from 
the population would change the averages. If he knew graph theory, the researcher 
would realize that the nonvirgin male average number of partners will be x(f/m) 
times the nonvirgin female average number of partners. What is x? 

10.2 Connectedness 

10.2.1 Paths and Simple Cycles 

Paths in simple graphs are esentially the same as paths in digraphs. We just mod­
ify the digraph definitions using undirected edges instead of directed ones. For 
example, the formal definition of a path in a simple graph is a virtually that same 
as Definition 8.1.1 of paths in digraphs: 

Definition 10.2.1. A path in a graph, G, is a sequence of k ≥ 0 vertices 

v0, . . . , vk 

such that vi —vi+1 is an edge of G for all i where 0 ≤ i < k . The path is said to start 
at v0, to end at vk, and the length of the path is defined to be k. 

An edge, u—v, is traversed n times by the path if there are n different values of 
i such that vi —vi+1 = u—v. The path is simple2 iff all the vi’s are different, that is, 
if i =� j implies vi =� vj . 

For example, the graph in Figure 10.3 has a length 6 simple path A,B,C,D,E,F,G. 
This is the longest simple path in the graph. 

As in digraphs, the length of a path is the total number of times it traverses 
edges, which is one less than its length as a sequence of vertices. For example, the 
length 6 path A,B,C,D,E,F,G is actually a sequence of seven vertices. 

2Heads up: what we call “paths” are commonly referred to in graph theory texts as “walks,” and 
simple paths are referred to as just “paths”. Likewise, what we will call cycles and simple cycles are 
commonly called “closed walks” and just “cycles”. 
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A

B

C

D E

F G
H

Figure 10.3: A graph with 3 simple cycles. 

A cycle can be described by a path that begins and ends with the same vertex. 
For example, B,C,D,E,C,B is a cycle in the graph in Figure 10.3. This path suggests 
that the cycle begins and ends at vertex B, but a cycle isn’t intended to have a 
beginning and end, and can be described by any of the paths that go around it. For 
example, D,E,C,B,C,D describes this same cycle as though it started and ended at 
D, and D,C,B,C,E,D describes the same cycle as though it started and ended at D 
but went in the opposite direction. (By convention, a single vertex is a length 0 
cycle beginning and ending at the vertex.) 

All the paths that describe the same cycle have the same length which is defined 
to be the length of the cycle. (Note that this implies that going around the same cycle 
twice is considered to be different than going around it once.) 

A simple cycle is a cycle that doesn’t cross or backtrack on itself. For exam­
ple, the graph in Figure 10.3 has three simple cycles B,H,E,C,B and C,D,E,C and 
B,C,D,E,H,B. More precisely, a simple cycle is a cycle that can be described by a 
path of length at least three whose vertices are all different except for the begin­
ning and end vertices. So in contrast to simple paths, the length of a simple cycle is 
the same as the number of distinct vertices that appear in it. 

From now on we’ll stop being picky about distinguishing a cycle from a path 
that describes it, and we’ll just refer to the path as a cycle. 3 

Simple cycles are especially important, so we will give a proper definition of 
them. Namely, we’ll define a simple cycle in G to be a subgraph of G that looks like 
a cycle that doesn’t cross itself. Formally: 

Definition 10.2.2. A subgraph, G�, of a graph, G, is a graph whose vertices, V �, are 
a subset of the vertices of G and whose edges are a subset of the edges of G. 

Notice that since a subgraph is itself a graph, the endpoints of every edge of G� 

3Technically speaking, we haven’t ever defined what a cycle is, only how to describe it with paths. 
But we won’t need an abstract definition of cycle, since all that matters about a cycle is which paths 
describe it. 
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must be vertices in V �. 

Definition 10.2.3. For n ≥ 3, let Cn be the graph with vertices 1, . . . , n and edges 

1—2, 2—3, . . . , (n − 1)—n, n—1. 

A graph is a simple cycle of length n iff it is isomorphic to Cn for some n ≥ 3. A 
simple cycle of a graph, G, is a subgraph of G that is a simple cycle. 

This definition formally captures the idea that simple cycles don’t have direc­
tion or beginnings or ends. 

10.2.2 Connected Components 

Definition 10.2.4. Two vertices in a graph are said to be connected when there is 
a path that begins at one and ends at the other. By convention, every vertex is 
considered to be connected to itself by a path of length zero. 

The diagram in Figure 10.4 looks like a picture of three graphs, but is intended 
to be a picture of one graph. This graph consists of three pieces (subgraphs). Each 
piece by itself is connected, but there are no paths between vertices in different 
pieces. 

Figure 10.4: One graph with 3 connected components. 

Definition 10.2.5. A graph is said to be connected when every pair of vertices are 
connected. 

These connected pieces of a graph are called its connected components. A rigor­
ous definition is easy: a connected component is the set of all the vertices connected 
to some single vertex. So a graph is connected iff it has exactly one connected com­
ponent. The empty graph on n vertices has n connected components. 
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10.2.3 How Well Connected? 

If we think of a graph as modelling cables in a telephone network, or oil pipelines, 
or electrical power lines, then we not only want connectivity, but we want connec­
tivity that survives component failure. A graph is called k-edge connected if it takes 
at least k “edge-failures” to disconnect it. More precisely: 

Definition 10.2.6. Two vertices in a graph are k-edge connected if they remain con­
nected in every subgraph obtained by deleting k − 1 edges. A graph with at least 
two vertices is k-edge connected4 if every two of its vertices are k-edge connected. 

So 1-edge connected is the same as connected for both vertices and graphs. An­
other way to say that a graph is k-edge connected is that every subgraph obtained 
from it by deleting at most k − 1 edges is connected. For example, in the graph in 
Figure 10.3, vertices B and E are 2-edge connected, G and E are 1-edge connected, 
and no vertices are 3-edge connected. The graph as a whole is only 1-edge con­
nected. More generally, any simple cycle is 2-edge connected, and the complete 
graph, Kn, is (n − 1)-edge connected. 

If two vertices are connected by k edge-disjoint paths (that is, no two paths 
traverse the same edge), then they are obviously k-edge connected. A fundamental 
fact, whose ingenious proof we omit, is Menger’s theorem which confirms that the 
converse is also true: if two vertices are k-edge connected, then there are k edge-
disjoint paths connecting them. It even takes some ingenuity to prove this for the 
case k = 2. 

10.2.4 Connection by Simple Path 

Where there’s a path, there’s a simple path. This is sort of obvious, but it’s easy 
enough to prove rigorously using the Well Ordering Principle. 

Lemma 10.2.7. If vertex u is connected to vertex v in a graph, then there is a simple path 
from u to v. 

Proof. Since there is a path from u to v, there must, by the Well-ordering Principle, 
be a minimum length path from u to v. If the minimum length is zero or one, this 
minimum length path is itself a simple path from u to v. Otherwise, there is a 
minimum length path 

v0, v1, . . . , vk 

from u = v0 to v = vk where k ≥ 2. We claim this path must be simple. To 
prove the claim, suppose to the contrary that the path is not simple, that is, some 
vertex on the path occurs twice. This means that there are integers i, j such that 
0 ≤ i < j ≤ k with vi = vj . Then deleting the subsequence 

vi+1, . . . vj 

4The corresponding definition of connectedness based on deleting vertices rather than edges is 
common in Graph Theory texts and is usually simply called “k-connected” rather than “k-vertex con­
nected.” 
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yields a strictly shorter path 

v0, v1, . . . , vi, vj+1, vj+2, . . . , vk 

from u to v, contradicting the minimality of the given path. � 

Actually, we proved something stronger: 

Corollary 10.2.8. For any path of length k in a graph, there is a simple path of length at 
most k with the same endpoints. 

10.2.5 The Minimum Number of Edges in a Connected Graph 

The following theorem says that a graph with few edges must have many con­
nected components. 

Theorem 10.2.9. Every graph with v vertices and e edges has at least v − e connected 
components. 

Of course for Theorem 10.2.9 to be of any use, there must be fewer edges than 
vertices. 

Proof. We use induction on the number of edges, e. Let P (e) be the proposition 
that 

for every v, every graph with v vertices and e edges has at least v − e 
connected components. 

Base case:(e = 0). In a graph with 0 edges and v vertices, each vertex is itself a 
connected component, and so there are exactly v = v − 0 connected components. 
So P (e) holds. 

Inductive step: Now we assume that the induction hypothesis holds for every 
e-edge graph in order to prove that it holds for every (e + 1)-edge graph, where 
e ≥ 0. Consider a graph, G, with e + 1 edges and k vertices. We want to prove that 
G has at least v − (e + 1) connected components. To do this, remove an arbitrary 
edge a—b and call the resulting graph G�. By the induction assumption, G� has 
at least v − e connected components. Now add back the edge a—b to obtain the 
original graph G. If a and b were in the same connected component of G�, then G 
has the same connected components as G�, so G has at least v − e > v − (e + 1) 
components. Otherwise, if a and b were in different connected components of G�, 
then these two components are merged into one in G, but all other components 
remain unchanged, reducing the number of components by 1. Therefore, G has at 
least (v−e)−1 = v−(e+1) connected components. So in either case, P (e+1) holds. 
This completes the Inductive step. The theorem now follows by induction. � 

Corollary 10.2.10. Every connected graph with v vertices has at least v − 1 edges. 

http:10.2.10
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A couple of points about the proof of Theorem 10.2.9 are worth noticing. First, 
we used induction on the number of edges in the graph. This is very common 
in proofs involving graphs, and so is induction on the number of vertices. When 
you’re presented with a graph problem, these two approaches should be among 
the first you consider. The second point is more subtle. Notice that in the inductive 
step, we took an arbitrary (n + 1)-edge graph, threw out an edge so that we could 
apply the induction assumption, and then put the edge back. You’ll see this shrink-
down, grow-back process very often in the inductive steps of proofs related to 
graphs. This might seem like needless effort; why not start with an n-edge graph 
and add one more to get an (n + 1)-edge graph? That would work fine in this 
case, but opens the door to a nasty logical error called buildup error, illustrated in 
Problems 10.5 and 10.11. Always use shrink-down, grow-back arguments, and 
you’ll never fall into this trap. 

10.2.6 Problems 

Class Problems 

Problem 10.8. 
The n-dimensional hypercube, Hn, is a graph whose vertices are the binary strings 
of length n. Two vertices are adjacent if and only if they differ in exactly 1 bit. For 
example, in H3, vertices 111 and 011 are adjacent because they differ only in the 
first bit, while vertices 101 and 011 are not adjacent because they differ at both 
the first and second bits. 

(a) Prove that it is impossible to find two spanning trees of H3 that do not share 
some edge. 

(b) Verify that for any two vertices x =� y of H3, there are 3 paths from x to y in 
H3, such that, besides x and y, no two of those paths have a vertex in common. 

(c) Conclude that the connectivity of H3 is 3. 

(d) Try extending your reasoning to H4. (In fact, the connectivity of Hn is n for all 
n ≥ 1. A proof appears in the problem solution.) 

Problem 10.9. 
A set, M , of vertices of a graph is a maximal connected set if every pair of vertices in 
the set are connected, and any set of vertices properly containing M will contain 
two vertices that are not connected. 

(a) What are the maximal connected subsets of the following (unconnected) graph? 
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(b) Explain the connection between maximal connected sets and connected com­
ponents. Prove it. 

Problem 10.10. (a) Prove that Kn is (n − 1)-edge connected for n > 1. 
Let Mn be a graph defined as follows: begin by taking n graphs with non-

overlapping sets of vertices, where each of the n graphs is (n − 1)-edge connected 
(they could be disjoint copies of Kn, for example). These will be subgraphs of Mn. 
Then pick n vertices, one from each subgraph, and add enough edges between 
pairs of picked vertices that the subgraph of the n picked vertices is also (n − 1)­
edge connected. 
(b) Draw a picture of M4. 

(c) Explain why Mn is (n − 1)-edge connected. 

Problem 10.11. 
Definition 10.2.5. A graph is connected iff there is a path between every pair of its 
vertices. 

False Claim. If every vertex in a graph has positive degree, then the graph is connected. 

(a) Prove that this Claim is indeed false by providing a counterexample. 

(b) Since the Claim is false, there must be an logical mistake in the following 
bogus proof. Pinpoint the first logical mistake (unjustified step) in the proof. 

Bogus proof. We prove the Claim above by induction. Let P (n) be the proposition 
that if every vertex in an n-vertex graph has positive degree, then the graph is 
connected. 

Base cases: (n ≤ 2). In a graph with 1 vertex, that vertex cannot have positive 
degree, so P (1) holds vacuously.


P (2) holds because there is only one graph with two vertices of positive degree,

namely, the graph with an edge between the vertices, and this graph is connected.
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Inductive step: We must show that P (n) implies P (n + 1) for all n ≥ 2. Consider 
an n-vertex graph in which every vertex has positive degree. By the assumption 
P (n), this graph is connected; that is, there is a path between every pair of vertices. 
Now we add one more vertex x to obtain an (n + 1)-vertex graph: 

z

y

X

n − vertex graph

All that remains is to check that there is a path from x to every other vertex z. Since 
x has positive degree, there is an edge from x to some other vertex, y. Thus, we can 
obtain a path from x to z by going from x to y and then following the path from y 
to z. This proves P (n + 1). 
By the principle of induction, P (n) is true for all n ≥ 0, which proves the Claim. 

Homework Problems 

Problem 10.12. 
In this problem we’ll consider some special cycles in graphs called Euler circuits, 
named after the famous mathematician Leonhard Euler. (Same Euler as for the 
constant e ≈ 2.718 —he did a lot of stuff.) 

Definition 10.2.11. An Euler circuit of a graph is a cycle which traverses every 
edge exactly once. 

Does the graph in the following figure contain an Euler circuit? 

A

B

C

D
F

E

G

http:10.2.11
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Well, if it did, the edge (E,F ) would need to be included. If the path does not 
start at F then at some point it traverses edge (E,F ), and now it is stuck at F since 
F has no other edges incident to it and an Euler circuit can’t traverse (E,F ) twice. 
But then the path could not be a circuit. On the other hand, if the path starts at F , 
it must then go to E along (E,F ), but now it cannot return to F . It again cannot be 
a circuit. This argument generalizes to show that if a graph has a vertex of degree 
1, it cannot contain an Euler circuit. 

So how do you tell in general whether a graph has an Euler circuit? At first 
glance this may seem like a daunting problem (the similar sounding problem of 
finding a cycle that touches every vertex exactly once is one of those million dollar 
NP-complete problems known as the Traveling Salesman Problem) —but it turns out 
to be easy. 
(a) Show that if a graph has an Euler circuit, then the degree of each of its vertices 

is even. 
In the remaining parts, we’ll work out the converse: if the degree of every 

vertex of a connected finite graph is even, then it has an Euler circuit. To do this, 
let’s define an Euler path to be a path that traverses each edge at most once. 
(b) Suppose that an Euler path in a connected graph does not traverse every edge. 

Explain why there must be an untraversed edge that is incident to a vertex on the 
path. 

In the remaining parts, let W be the longest Euler path in some finite, connected 
graph. 
(c) Show that if W is a cycle, then it must be an Euler circuit. 

Hint: part (b) 

(d) Explain why all the edges incident to the end of W must already have been 
traversed by W . 

(e) Show that if the end of W was not equal to the start of W , then the degree of 
the end would be odd. 

Hint: part (d) 

(f) Conclude that if every vertex of a finite, connected graph has even degree, 
then it has an Euler circuit. 

Homework Problems 

Problem 10.13. 
An edge is said to leave a set of vertices if one end of the edge is in the set and the 
other end is not. 
(a) An n-node graph is said to be mangled if there is an edge leaving every set of 
�n/2� or fewer vertices. Prove the following claim. 
Claim. Every mangled graph is connected. 

An n-node graph is said to be tangled if there is an edge leaving every set of 
�n/3� or fewer vertices. 
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(b) Draw a tangled graph that is not connected. 

(c) Find the error in the proof of the following 
False Claim. Every tangled graph is connected. 

False proof. The proof is by strong induction on the number of vertices in the graph. 
Let P (n) be the proposition that if an n-node graph is tangled, then it is connected. 
In the base case, P (1) is true because the graph consisting of a single node is triv­
ially connected. 
For the inductive case, assume n ≥ 1 and P (1), . . . , P (n) hold. We must prove 
P (n + 1), namely, that if an (n + 1)-node graph is tangled, then it is connected. 
So let G be a tangled, (n + 1)-node graph. Choose �n/3� of the vertices and let G1 

be the tangled subgraph of G with these vertices and G2 be the tangled subgraph 
with the rest of the vertices. Note that since n ≥ 1, the graph G has a least two 
vertices, and so both G1 and G2 contain at least one vertex. Since G1 and G2 are 
tangled, we may assume by strong induction that both are connected. Also, since 
G is tangled, there is an edge leaving the vertices of G1 which necessarily connects 
to a vertex of G2. This means there is a path between any two vertices of G: a 
path within one subgraph if both vertices are in the same subgraph, and a path 
traversing the connecting edge if the vertices are in separate subgraphs. Therefore, 
the entire graph, G, is connected. This completes the proof of the inductive case, 
and the Claim follows by strong induction. 

Problem 10.14. 
Let G be the graph formed from C2n, the simple cycle of length 2n, by connecting 
every pair of vertices at maximum distance from each other in C2n by an edge in 
G. 
(a) Given two vertices of G find their distance in G. 

(b) What is the diameter of G, that is, the largest distance between two vertices? 

(c) Prove that the graph is not 4-connected. 

(d) Prove that the graph is 3-connected. 

10.3 Trees 

Trees are a fundamental data structure in computer science, and there are many 
kinds, such as rooted, ordered, and binary trees. In this section we focus on the 
purest kind of tree. Namely, we use the term tree to mean a connected graph with­
out simple cycles. 

A graph with no simple cycles is called acyclic; so trees are acyclic connected 
graphs. 
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10.3.1 Tree Properties 

Here is an example of a tree: 

A vertex of degree at most one is called a leaf. In this example, there are 5 leaves. 
Note that the only case where a tree can have a vertex of degree zero is a graph with 
a single vertex. 

The graph shown above would no longer be a tree if any edge were removed, 
because it would no longer be connected. The graph would also not remain a tree 
if any edge were added between two of its vertices, because then it would contain 
a simple cycle. Furthermore, note that there is a unique path between every pair 
of vertices. These features of the example tree are actually common to all trees. 

Theorem 10.3.1. Every tree has the following properties: 

1. Any connected subgraph is a tree. 

2. There is a unique simple path between every pair of vertices. 

3. Adding an edge between two vertices creates a cycle. 

4. Removing any edge disconnects the graph. 

5. If it has at least two vertices, then it has at least two leaves. 

6. The number of vertices is one larger than the number of edges. 

Proof. 1. A simple cycle in a subgraph is also a simple cycle in the whole graph, 
so any subgraph of an acyclic graph must also be acyclic. If the subgraph is 
also connected, then by definition, it is a tree. 

2. There is at least one path, and hence one simple path, between every pair of 
vertices, because the graph is connected. Suppose that there are two different 
simple paths between vertices u and v. Beginning at u, let x be the first vertex 
where the paths diverge, and let y be the next vertex they share. Then there 
are two simple paths from x to y with no common edges, which defines a 
simple cycle. This is a contradiction, since trees are acyclic. Therefore, there 
is exactly one simple path between every pair of vertices. 
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u
x

y
v

3. An additional edge u—v together with the unique path between u and v 
forms a simple cycle. 

4. Suppose that we remove edge u—v. Since the tree contained a unique path 
between u and v, that path must have been u—v. Therefore, when that edge 
is removed, no path remains, and so the graph is not connected. 

5. Let v1, . . . , vm be the sequence of vertices on a longest simple path in the 
tree. Then m ≥ 2, since a tree with two vertices must contain at least one 
edge. There cannot be an edge v1 —vi for 2 < i ≤ m; otherwise, vertices 
v1, . . . , vi would from a simple cycle. Furthermore, there cannot be an edge 
u—v1 where u is not on the path; otherwise, we could make the path longer. 
Therefore, the only edge incident to v1 is v1 —v2, which means that v1 is a 
leaf. By a symmetric argument, vm is a second leaf. 

6. We use induction on the number of vertices. For a tree with a single vertex, 
the claim holds since it has no edges and 0+1 = 1 vertex. Now suppose that 
the claim holds for all n-vertex trees and consider an (n+1)-vertex tree, T . Let 
v be a leaf of the tree. You can verify that deleting a vertex of degree 1 (and its 
incident edge) from any connected graph leaves a connected subgraph. So 
by 1., deleting v and its incident edge gives a smaller tree, and this smaller 
tree has one more vertex than edge by induction. If we re-attach the vertex, 
v, and its incident edge, then the equation still holds because the number of 
vertices and number of edges both increase by 1. Thus, the claim holds for T 
and, by induction, for all trees. 

Various subsets of these properties provide alternative characterizations of trees, 
though we won’t prove this. For example, a connected graph with a number of ver­
tices one larger than the number of edges is necessarily a tree. Also, a graph with 
unique paths between every pair of vertices is necessarily a tree. 

10.3.2 Spanning Trees 

Trees are everywhere. In fact, every connected graph contains a subgraph that is 
a tree with the same vertices as the graph. This is a called a spanning tree for the 
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graph. For example, here is a connected graph with a spanning tree highlighted. 

Theorem 10.3.2. Every connected graph contains a spanning tree. 

Proof. Let T be a connected subgraph of G, with the same vertices as G, and with 
the smallest number of edges possible for such a subgraph. We show that T is 
acyclic by contradiction. So suppose that T has a cycle with the following edges: 

v0 —v1, v1 —v2, . . . , vn —v0 

Suppose that we remove the last edge, vn —v0. If a pair of vertices x and y was 
joined by a path not containing vn —v0, then they remain joined by that path. On 
the other hand, if x and y were joined by a path containing vn —v0, then they re­
main joined by a path containing the remainder of the cycle. So all the vertices of 
G are still connected after we remove an edge from T . This is a contradiction, since 
T was defined to be a minimum size connected subgraph with all the vertices of 
G. So T must be acyclic. � 

10.3.3 Problems 

Class Problems 

Problem 10.15. 
Procedure Mark starts with a connected, simple graph with all edges unmarked 
and then marks some edges. At any point in the procedure a path that traverses 
only marked edges is called a fully marked path, and an edge that has no fully 
marked path between its endpoints is called eligible. 

Procedure Mark simply keeps marking eligible edges, and terminates when 
there are none. 

Prove that Mark terminates, and that when it does, the set of marked edges 
forms a spanning tree of the original graph. 

Problem 10.16. 
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Procedure create-spanning-tree 

Given a simple graph G, keep applying the following operations to the 
graph until no operation applies: 

1. If an edge u—v of G is on a simple cycle, then delete u—v. 

2. If vertices u and v of G are not connected, then add the edge u—v. 

Assume the vertices of G are the integers 1, 2, . . . , n for some n ≥ 2. Procedure 
create-spanning-tree can be modeled as a state machine whose states are all possi­
ble simple graphs with vertices 1, 2, . . . , n. The start state is G, and the final states 
are the graphs on which no operation is possible. 
(a) Let G be the graph with vertices {1, 2, 3, 4} and edges 

{1—2, 3—4} 

What are the possible final states reachable from start state G? Draw them. 

(b) Prove that any final state of must be a tree on the vertices. 

(c) For any state, G�, let e be the number of edges in G�, c be the number of con­
nected components it has, and s be the number of simple cycles. For each of the 
derived variables below, indicate the strongest of the properties that it is guaran­
teed to satisfy, no matter what the starting graph G is and be prepared to briefly 
explain your answer. 

The choices for properties are: constant, strictly increasing, strictly decreasing, weakly 
increasing, weakly decreasing, none of these. The derived variables are 

(i) e 

(ii) c 

(iii) s 

(iv) e − s 

(v) c + e 

(vi) 3c + 2e 

(vii) c + s 

(viii) (c, e), partially ordered coordinatewise (the product partial order, Ch. 7.4). 

(d) Prove that procedure create-spanning-tree terminates. (If your proof depends 
on one of the answers to part (c), you must prove that answer is correct.) 

Problem 10.17. 
Prove that a graph is a tree iff it has a unique simple path between any two vertices. 
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Homework Problems 

Problem 10.18. (a) Prove that the average degree of a tree is less than 2. 

(b) Suppose every vertex in a graph has degree at least k. Explain why the graph 
has a simple path of length k. 

Hint: Consider a longest simple path. 

10.4 Coloring Graphs 

In section 10.1.2, we used edges to indicate an affinity between two nodes, but 
having an edge represent a conflict between two nodes also turns out to be really 
useful. 

10.5 Modelling Scheduling Conflicts 

Each term the MIT Schedules Office must assign a time slot for each final exam. 
This is not easy, because some students are taking several classes with finals, and 
a student can take only one test during a particular time slot. The Schedules Office 
wants to avoid all conflicts. Of course, you can make such a schedule by having 
every exam in a different slot, but then you would need hundreds of slots for the 
hundreds of courses, and exam period would run all year! So, the Schedules Office 
would also like to keep exam period short. The Schedules Office’s problem is easy 
to describe as a graph. There will be a vertex for each course with a final exam, and 
two vertices will be adjacent exactly when some student is taking both courses. 
For example, suppose we need to schedule exams for 6.041, 6.042, 6.002, 6.003 and 
6.170. The scheduling graph might look like this: 

002

041 042

003

170

6.002 and 6.042 cannot have an exam at the same time since there are students in 
both courses, so there is an edge between their nodes. On the other hand, 6.042 and 
6.170 can have an exam at the same time if they’re taught at the same time (which 
they sometimes are), since no student can be enrolled in both (that is, no student 
should be enrolled in both when they have a timing conflict). Next, identify each 
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time slot with a color. For example, Monday morning is red, Monday afternoon is 
blue, Tuesday morning is green, etc. 

Assigning an exam to a time slot is now equivalent to coloring the correspond­
ing vertex. The main constraint is that adjacent vertices must get different colors — 
otherwise, some student has two exams at the same time. Furthermore, in order 
to keep the exam period short, we should try to color all the vertices using as few 
different colors as possible. For our example graph, three colors suffice: 

red

green blue

green

blue

This coloring corresponds to giving one final on Monday morning (red), two 
Monday afternoon (blue), and two Tuesday morning (green). Can we use fewer 
than three colors? No! We can’t use only two colors since there is a triangle in the 
graph, and three vertices in a triangle must all have different colors. 

This is an example of what is a called a graph coloring problem: given a graph G, 
assign colors to each node such that adjacent nodes have different colors. A color 
assignment with this property is called a valid coloring of the graph —a “coloring,” 
for short. A graph G is k-colorable if it has a coloring that uses at most k colors. 

Definition 10.5.1. The minimum value of k for which a graph, G, has a valid col­
oring is called its chromatic number, χ(G). 

In general, trying to figure out if you can color a graph with a fixed number of 
colors can take a long time. It’s a classic example of a problem for which no fast 
algorithms are known. In fact, it is easy to check if a coloring works, but it seems 
really hard to find it (if you figure out how, then you can get a $1 million Clay 
prize). 

10.5.1 Degree-bounded Coloring 

There are some simple graph properties that give useful upper bounds on color­
ings. For example, if we have a bound on the degrees of all the vertices in a graph, 
then we can easily find a coloring with only one more color than the degree bound. 

Theorem 10.5.2. A graph with maximum degree at most k is (k + 1)-colorable. 

Unfortunately, if you try induction on k, it will lead to disaster. It is not that 
it is impossible, just that it is extremely painful and would ruin you if you tried 
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it on an exam. Another option, especially with graphs, is to change what you are 
inducting on. In graphs, some good choices are n, the number of nodes, or e, the 
number of edges. 

Proof. We use induction on the number of vertices in the graph, which we denote 
by n. Let P (n) be the proposition that an n-vertex graph with maximum degree at 
most k is (k + 1)-colorable. 

Base case: (n = 1) A 1-vertex graph has maximum degree 0 and is 1-colorable, 
so P (1) is true. 

Inductive step: Now assume that P (n) is true, and let G be an (n + 1)-vertex 
graph with maximum degree at most k. Remove a vertex v (and all edges incident 
to it), leaving an n-vertex subgraph, H . The maximum degree of H is at most k, 
and so H is (k +1)-colorable by our assumption P (n). Now add back vertex v. We 
can assign v a color different from all its adjacent vertices, since there are at most 
k adjacent vertices and k + 1 colors are available. Therefore, G is (k + 1)-colorable. 
This completes the inductive step, and the theorem follows by induction. � 

Sometimes k + 1 colors is the best you can do. For example, in the complete 
graph, Kn, every one of its n vertices is adjacent to all the others, so all n must 
be assigned different colors. Of course n colors is also enough, so χ(Kn) = n. 
So Kk+1 is an example where Theorem 10.5.2 gives the best possible bound. This 
means that Theorem 10.5.2 also gives the best possible bound for any graph with 
degree bounded by k that has Kk+1 as a subgraph. But sometimes k+1 colors is far 
from the best that you can do. Here’s an example of an n-node star graph for n = 7: 

In the n-node star graph, the maximum degree is n − 1, but the star only needs 2 
colors! 

10.5.2 Why coloring? 

One reason coloring problems come all the time is because scheduling conflicts 
are so common. For example, at Akamai, a new version of software is deployed 
over each of 20,000 servers every few days. The updates cannot be done at the 
same time since the servers need to be taken down in order to deploy the software. 
Also, the servers cannot be handled one at a time, since it would take forever to 
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update them all (each one takes about an hour). Moreover, certain pairs of servers 
cannot be taken down at the same time since they have common critical functions. 
This problem was eventually solved by making a 20,000 node conflict graph and 
coloring it with 8 colors – so only 8 waves of install are needed! Another example 
comes from the need to assign frequencies to radio stations. If two stations have an 
overlap in their broadcast area, they can’t be given the same frequency. Frequen­
cies are precious and expensive, so you want to minimize the number handed out. 
This amounts to finding the minimum coloring for a graph whose vertices are the 
stations and whose edges are between stations with overlapping areas. 

Coloring also comes up in allocating registers for program variables. While a 
variable is in use, its value needs to be saved in a register, but registers can often be 
reused for different variables. But two variables need different registers if they are 
referenced during overlapping intervals of program execution. So register alloca­
tion is the coloring problem for a graph whose vertices are the variables; vertices 
are adjacent if their intervals overlap, and the colors are registers. 

Finally, there’s the famous map coloring problem stated in Propostion 1.2.5. 
The question is how many colors are needed to color a map so that adjacent ter­
ritories get different colors? This is the same as the number of colors needed to 
color a graph that can be drawn in the plane without edges crossing. A proof that 
four colors are enough for the planar graphs was acclaimed when it was discovered 
about thirty years ago. Implicit in that proof was a 4-coloring procedure that takes 
time proportional to the number of vertices in the graph (countries in the map). 
On the other hand, it’s another of those million dollar prize questions to find an 
efficient procedure to tell if a planar graph really needs four colors or if three will 
actually do the job. But it’s always easy to tell if an arbitrary graph is 2-colorable, as 
we show in Section 10.6. Later in Chapter 12, we’ll develop enough planar graph 
theory to present an easy proof at least that planar graphs are 5-colorable. 

10.5.3 Problems 

Class Problems 

Problem 10.19. 
Let G be the graph below5. Carefully explain why χ(G) = 4. 

5From Discrete Mathematics, Lovász, Pelikan, and Vesztergombi. Springer, 2003. Exercise 13.3.1 
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Homework Problems 

Problem 10.20. 
6.042 is often taught using recitations. Suppose it happened that 8 recitations were 
needed, with two or three staff members running each recitation. The assignment 
of staff to recitation sections is as follows: 

• R1: Eli, Megumi, Rich 

• R2: Eli, Stephanie, David 

• R3: Megumi, Stav 

• R4: Liz, Stephanie, Oscar 

• R5: Liz, Tom, David 

• R6: Tom, Stav 

• R7: Tom, Stephanie 

• R8: Megumi, Stav, David 

Two recitations can not be held in the same 90-minute time slot if some staff 
member is assigned to both recitations. The problem is to determine the minimum 
number of time slots required to complete all the recitations. 
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(a) Recast this problem as a question about coloring the vertices of a particular 
graph. Draw the graph and explain what the vertices, edges, and colors represent. 

(b) Show a coloring of this graph using the fewest possible colors. What schedule 
of recitations does this imply? 

Problem 10.21. 
This problem generalizes the result proved Theorem 10.5.2 that any graph with 
maximum degree at most w is (w + 1)-colorable. 

A simple graph, G, is said to have width, w, iff its vertices can be arranged in a 
sequence such that each vertex is adjacent to at most w vertices that precede it in 
the sequence. If the degree of every vertex is at most w, then the graph obviously 
has width at most w —just list the vertices in any order. 
(a) Describe an example of a graph with 100 vertices, width 3, but average degree 

more than 5. Hint: Don’t get stuck on this; if you don’t see it after five minutes, ask 
for a hint. 

(b) Prove that every graph with width at most w is (w + 1)-colorable. 

(c) Prove that the average degree of a graph of width w is at most 2w. 

Exam Problems 

Problem 10.22. 
Recall that a coloring of a graph is an assignment of a color to each vertex such that 
no two adjacent vertices have the same color. A k-coloring is a coloring that uses at 
most k colors. 

False Claim. Let G be a graph whose vertex degrees are all ≤ k. If G has a vertex of 
degree strictly less than k, then G is k-colorable. 

(a) Give a counterexample to the False Claim when k = 2. 

(b) Underline the exact sentence or part of a sentence where the following proof 
of the False Claim first goes wrong: 

False proof. Proof by induction on the number n of vertices:


Induction hypothesis:


P (n)::= “Let G be an n-vertex graph whose vertex degrees are all ≤ k. If G also

has a vertex of degree strictly less than k, then G is k-colorable.”


Base case: (n = 1) G has one vertex, the degree of which is 0. Since G is 1-colorable,

P (1) holds.


Inductive step:
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We may assume P (n). To prove P (n + 1), let Gn+1 be a graph with n + 1 vertices 
whose vertex degrees are all k or less. Also, suppose Gn+1 has a vertex, v, of degree 
strictly less than k. Now we only need to prove that Gn+1 is k-colorable. 

To do this, first remove the vertex v to produce a graph, Gn, with n vertices. Let u 
be a vertex that is adjacent to v in Gn+1. Removing v reduces the degree of u by 1. 
So in Gn, vertex u has degree strictly less than k. Since no edges were added, the 
vertex degrees of Gn remain ≤ k. So Gn satisfies the conditions of the induction 
hypothesis, P (n), and so we conclude that Gn is k-colorable. 

Now a k-coloring of Gn gives a coloring of all the vertices of Gn+1, except for 
v. Since v has degree less than k, there will be fewer than k colors assigned to 
the nodes adjacent to v. So among the k possible colors, there will be a color not 
used to color these adjacent nodes, and this color can be assigned to v to form a 
k-coloring of Gn+1. � 

(c) With a slightly strengthened condition, the preceding proof of the False Claim 
could be revised into a sound proof of the following Claim: 
Claim. Let G be a graph whose vertex degrees are all ≤ k. If �statement inserted from below�
has a vertex of degree strictly less than k, then G is k-colorable. 

Circle each of the statements below that could be inserted to make the Claim true. 

• G is connected and 

• G has no vertex of degree zero and 

• G does not contain a complete graph on k vertices and 

• every connected component of G 

• some connected component of G 

10.6 Bipartite Matchings 

10.6.1 Bipartite Graphs 

There were two kinds of vertices in the “Sex in America” graph —males and fe­
males, and edges only went between the two kinds. Graphs like this come up so 
frequently they have earned a special name —they are called bipartite graphs. 

Definition 10.6.1. A bipartite graph is a graph together with a partition of its vertices 
into two sets, L and R, such that every edge is incident to a vertex in L and to a 
vertex in R. 

So every bipartite graph looks something like this: 
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Now we can immediately see how to color a bipartite graph using only two 
colors: let all the L vertices be black and all the R vertices be white. Conversely, if 
a graph is 2-colorable, then it is bipartite with L being the vertices of one color and 
R the vertices of the other color. In other words, 

“bipartite” is a synonym for “2-colorable.” 

The following Lemma gives another useful characterization of bipartite graphs. 

Theorem 10.6.2. A graph is bipartite iff it has no odd-length cycle. 

The proof of Theorem 10.6.2 is left to Problem 10.26. 

10.6.2 Bipartite Matchings 

The bipartite matching problem resembles the stable Marriage Problem in that it 
concerns a set of girls and a set of at least as many boys. There are no preference 
lists, but each girl does have some boys she likes and others she does not like. In 
the bipartite matching problem, we ask whether every girl can be paired up with a 
boy that she likes. Any particular matching problem can be specified by a bipartite 
graph with a vertex for each girl, a vertex for each boy, and an edge between a boy 
and a girl iff the girl likes the boy. For example, we might obtain the following 
graph: 
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Martha

Alice

Sarah

Jane
Mergatroid

Chuck

Tom

John

Michael

Now a matching will mean a way of assigning every girl to a boy so that differ­
ent girls are assigned to different boys, and a girl is always assigned to a boy she 
likes. For example, here is one possible matching for the girls: 

Martha

Alice

Sarah

Jane
Mergatroid

Chuck

Tom

John

Michael

Hall’s Matching Theorem states necessary and sufficient conditions for the ex­
istence of a matching in a bipartite graph. It turns out to be a remarkably useful 
mathematical tool. 

10.6.3 The Matching Condition 

We’ll state and prove Hall’s Theorem using girl-likes-boy terminology. Define the 
set of boys liked by a given set of girls to consist of all boys liked by at least one of 
those girls. For example, the set of boys liked by Martha and Jane consists of Tom, 
Michael, and Mergatroid. For us to have any chance at all of matching up the girls, 
the following matching condition must hold: 

Every subset of girls likes at least as large a set of boys. 
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For example, we can not find a matching if some 4 girls like only 3 boys. Hall’s 
Theorem says that this necessary condition is actually sufficient; if the matching 
condition holds, then a matching exists. 

Theorem 10.6.3. A matching for a set of girls G with a set of boys B can be found if and 
only if the matching condition holds. 

Proof. First, let’s suppose that a matching exists and show that the matching con­
dition holds. Consider an arbitrary subset of girls. Each girl likes at least the boy 
she is matched with. Therefore, every subset of girls likes at least as large a set of 
boys. Thus, the matching condition holds. 

Next, let’s suppose that the matching condition holds and show that a matching 
exists. We use strong induction on |G|, the number of girls. 

Base Case: (|G| = 1) If |G| = 1, then the matching condition implies that the 
lone girl likes at least one boy, and so a matching exists. 

Inductive Step: Now suppose that |G| ≥ 2. There are two cases: 

Case 1: Every proper subset of girls likes a strictly larger set of boys. In this case, we 
have some latitude: we pair an arbitrary girl with a boy she likes and send 
them both away. The matching condition still holds for the remaining boys 
and girls, so we can match the rest of the girls by induction. 

Case 2: Some proper subset of girls X ⊂ G likes an equal-size set of boys Y ⊂ B. 
We match the girls in X with the boys in Y by induction and send them all 
away. We can also match the rest of the girls by induction if we show that 
the matching condition holds for the remaining boys and girls. To check the 
matching condition for the remaining people, consider an arbitrary subset of 
the remaining girls X � ⊆ (G − X), and let Y � be the set of remaining boys 
that they like. We must show that |X �| ≤ |Y �|. Originally, the combined set 
of girls X ∪ X � liked the set of boys Y ∪ Y �. So, by the matching condition, 
we know: 

|X ∪ X �| ≤ |Y ∪ Y �| 

We sent away |X| girls from the set on the left (leaving X �) and sent away 
an equal number of boys from the set on the right (leaving Y �). Therefore, it 
must be that |X �| ≤ |Y �| as claimed. 

So there is in any case a matching for the girls, which completes the proof of 
the Inductive step. The theorem follows by induction. � 

The proof of this theorem gives an algorithm for finding a matching in a bipar­
tite graph, albeit not a very efficient one. However, efficient algorithms for finding 
a matching in a bipartite graph do exist. Thus, if a problem can be reduced to 
finding a matching, the problem is essentially solved from a computational per­
spective. 
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10.6.4 A Formal Statement 

Let’s restate Hall’s Theorem in abstract terms so that you’ll not always be con­
demned to saying, “Now this group of little girls likes at least as many little boys...” 

A matching in a graph, G, is a set of edges such that no two edges in the set 
share a vertex. A matching is said to cover a set, L, of vertices iff each vertex in L 
has an edge of the matching incident to it. In any graph, the set N(S), of neighbors6 

of some set, S, of vertices is the set of all vertices adjacent to some vertex in S. That 
is, 

N(S) ::= {r | s—r is an edge for some s ∈ S} . 

S is called a bottleneck if 
|S| > |N(S)| . 

Theorem 10.6.4 (Hall’s Theorem). Let G be a bipartite graph with vertex partition L, R. 
There is matching in G that covers L iff no subset of L is a bottleneck. 

An Easy Matching Condition 

The bipartite matching condition requires that every subset of girls has a certain 
property. In general, verifying that every subset has some property, even if it’s easy 
to check any particular subset for the property, quickly becomes overwhelming 
because the number of subsets of even relatively small sets is enormous —over a 
billion subsets for a set of size 30. However, there is a simple property of vertex 
degrees in a bipartite graph that guarantees a match and is very easy to check. 
Namely, call a bipartite graph degree-constrained if vertex degrees on the left are at 
least as large as those on the right. More precisely, 

Definition 10.6.5. A bipartite graph G with vertex partition L, R is degree-constrained 
if deg (l) ≥ deg (r) for every l ∈ L and r ∈ R. 

Now we can always find a matching in a degree-constrained bipartite graph. 

Lemma 10.6.6. Every degree-constrained bipartite graph satisifies the matching condi­
tion. 

Proof. Let S be any set of vertices in L. The number of edges incident to vertices 
in S is exactly the sum of the degrees of the vertices in S. Each of these edges is 
incident to a vertex in N(S) by definition of N(S). So the sum of the degrees of 
the vertices in N(S) is at least as large as the sum for S. But since the degree of 
every vertex in N(S) is at most as large as the degree of every vertex in S, there 
would have to be at least as many terms in the sum for N(S) as in the sum for S. 
So there have to be at least as many vertices in N(S) as in S, proving that S is not a 
bottleneck. So there are no bottlenecks, proving that the degree-constrained graph 
satisifies the matching condition. � 

6An equivalent definition of N(S) uses relational notation: N(S) is simply the image, SR, of S 
under the adjacency relation, R, on vertices of the graph. 
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Of course being degree-constrained is a very strong property, and lots of graphs 
that aren’t degree-constrained have matchings. But we’ll see examples of degree-
constrained graphs come up naturally in some later applications. 

10.6.5 Problems 

Class Problems 

Problem 10.23. 
MIT has a lot of student clubs loosely overseen by the MIT Student Association. 
Each eligible club would like to delegate one of its members to appeal to the Dean 
for funding, but the Dean will not allow a student to be the delegate of more than 
one club. Fortunately, the Association VP took 6.042 and recognizes a matching 
problem when she sees one. 
(a) Explain how to model the delegate selection problem as a bipartite matching 

problem. 

(b) The VP’s records show that no student is a member of more than 9 clubs. The 
VP also knows that to be eligible for support from the Dean’s office, a club must 
have at least 13 members. That’s enough for her to guarantee there is a proper 
delegate selection. Explain. (If only the VP had taken 6.046, Algorithms, she could 
even have found a delegate selection without much effort.) 

Problem 10.24. 
A Latin square is n × n array whose entries are the number 1, . . . , n. These en­
tries satisfy two constraints: every row contains all n integers in some order, and 
also every column contains all n integers in some order. Latin squares come up 
frequently in the design of scientific experiments for reasons illustrated by a little 
story in a footnote7 

7At Guinness brewery in the eary 1900’s, W. S. Gosset (a chemist) and E. S. Beavan (a “maltster”) 
were trying to improve the barley used to make the brew. The brewery used different varieties of barley 
according to price and availability, and their agricultural consultants suggested a different fertilizer mix 
and best planting month for each variety. 

Somewhat sceptical about paying high prices for customized fertilizer, Gosset and Beavan planned a 
season long test of the influence of fertilizer and planting month on barley yields. For as many months 
as there were varieties of barley, they would plant one sample of each variety using a different one of 
the fertilizers. So every month, they would have all the barley varieties planted and all the fertilizers 
used, which would give them a way to judge the overall quality of that planting month. But they also 
wanted to judge the fertilizers, so they wanted each fertilizer to be used on each variety during the 
course of the season. Now they had a little mathematical problem, which we can abstract as follows. 

Suppose there are n barley varieties and an equal number of recommended fertilizers. Form an n × n 
array with a column for each fertilizer and a row for each planting month. We want to fill in the entries 
of this array with the integers 1,. . . ,n numbering the barley varieties, so that every row contains all n 
integers in some order (so every month each variety is planted and each fertilizer is used), and also 
every column contains all n integers (so each fertilizer is used on all the varieties over the course of the 
growing season). 
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For example, here is a 4 × 4 Latin square: 

1 2 3 4 
3 4 2 1 
2 1 4 3 
4 3 1 2 

(a) Here are three rows of what could be part of a 5 × 5 Latin square: 

2 4 5 3 1 
4 1 3 2 5 
3 2 1 5 4 

Fill in the last two rows to extend this “Latin rectangle” to a complete Latin square. 

(b) Show that filling in the next row of an n × n Latin rectangle is equivalent to 
finding a matching in some 2n-vertex bipartite graph. 

(c) Prove that a matching must exist in this bipartite graph and, consequently, a 
Latin rectangle can always be extended to a Latin square. 

Exam Problems 

Problem 10.25. 
Overworked and over-caffeinated, the TAs decide to oust Albert and teach their 
own recitations. They will run a recitation session at 4 different times in the same 
room. There are exactly 20 chairs to which a student can be assigned in each recita­
tion. Each student has provided the TAs with a list of the recitation sessions her 
schedule allows and no student’s schedule conflicts with all 4 sessions. The TAs 
must assign each student to a chair during recitation at a time she can attend, if 
such an assignment is possible. 
(a) Describe how to model this situation as a matching problem. Be sure to specify 

what the vertices/edges should be and briefly describe how a matching would 
determine seat assignments for each student in a recitation that does not conflict 
with his schedule. (This is a modeling problem; we aren’t looking for a description 
of an algorithm to solve the problem.) 

(b) Suppose there are 65 students. Given the information provided above, is a 
matching guaranteed? Briefly explain. 
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Homework Problems 

Problem 10.26. 
In this problem you will prove: 

Theorem. A graph G is 2-colorable iff it contains no odd length cycle. 

As usual with “iff” assertions, the proof splits into two proofs: part (a) asks 
you to prove that the left side of the “iff” implies the right side. The other problem 
parts prove that the right side implies the left. 
(a) Assume the left side and prove the right side. Three to five sentences should 

suffice. 

(b) Now assume the right side. As a first step toward proving the left side, explain 
why we can focus on a single connected component H within G. 

(c) As a second step, explain how to 2-color any tree. 

(d) Choose any 2-coloring of a spanning tree, T , of H . Prove that H is 2-colorable 
by showing that any edge not in T must also connect different-colored vertices. 

Problem 10.27. 
Take a regular deck of 52 cards. Each card has a suit and a value. The suit is one of 
four possibilities: heart, diamond, club, spade. The value is one of 13 possibilities, 
A, 2, 3, . . . , 10, J,Q, K. There is exactly one card for each of the 4 × 13 possible 
combinations of suit and value. 

Ask your friend to lay the cards out into a grid with 4 rows and 13 columns. 
They can fill the cards in any way they’d like. In this problem you will show that 
you can always pick out 13 cards, one from each column of the grid, so that you 
wind up with cards of all 13 possible values. 
(a) Explain how to model this trick as a bipartite matching problem between the 

13 column vertices and the 13 value vertices. Is the graph necessarily degree con­
strained? 

(b) Show that any n columns must contain at least n different values and prove 
that a matching must exist. 

Problem 10.28. 
Scholars through the ages have identified twenty fundamental human virtues: hon­
esty, generosity, loyalty, prudence, completing the weekly course reading-response, 
etc. At the beginning of the term, every student in 6.042 possessed exactly eight of 
these virtues. Furthermore, every student was unique; that is, no two students 
possessed exactly the same set of virtues. The 6.042 course staff must select one ad­
ditional virtue to impart to each student by the end of the term. Prove that there is 
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a way to select an additional virtue for each student so that every student is unique 
at the end of the term as well. 

Suggestion: Use Hall’s theorem. Try various interpretations for the vertices on 
the left and right sides of your bipartite graph. 
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