
Chapter 8 

Directed graphs 

8.1 Digraphs 

A directed graph (digraph for short) is formally the same as a binary relation, R, on 
a set, A —that is, a relation whose domain and codomain are the same set, A. But 
we describe digraphs as though they were diagrams, with elements of A pictured 
as points on the plane and arrows drawn between related points. The elements 
of A are referred to as the vertices of the digraph, and the pairs (a, b) ∈ graph (R) 
are directed edges. Writing a b is a more suggestive alternative for the pair (a, b).→
Directed edges are also called arrows. 

For example, the divisibility relation on {1, 2, . . . , 12} is could be pictured by 
the digraph: 
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Figure 8.1: The Digraph for Divisibility on {1, 2, . . . , 12}. 
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8.1.1 Paths in Digraphs 

Picturing digraphs with points and arrows makes it natural to talk about following 
a path of successive edges through the graph. For example, in the digraph of Fig­
ure 8.1, a path might start at vertex 1, successively follow the edges from vertex 1 
to vertex 2, from 2 to 4, from 4 to 12, and then from 12 to 12 twice (or as many times 
as you like). We can represent the path with the sequence of sucessive vertices it 
went through, in this case: 

1, 2, 4, 12, 12, 12. 

So a path is just a sequence of vertices, with consecutive vertices on the path con­
nected by directed edges. Here is a formal definition: 

Definition 8.1.1. A path in a digraph is a sequence of vertices a0, . . . , ak with k ≥ 0 
such that ai → ai+1 is an edge of the digraph for i = 0, 1, . . . , k − 1. The path is said 
to start at a0, to end at ak, and the length of the path is defined to be k. The path is 
simple iff all the ai’s are different, that is, if i =� j, then ai =� aj . 

Note that a single vertex counts as length zero path that begins and ends at 
itself. 

It’s pretty natural to talk about the edges in a path, but technically, paths only 
have points, not edges. So to instead, we’ll say a path traverses an edge a b when 
a and b are consecutive vertices in the path. 

→ 

For any digraph, R, we can define some new relations on vertices based on 
paths, namely, the path relation, R∗, and the positive-length path relation, R+: 

a R∗ b ::= there is a path in R from a to b,


a R+ b ::= there is a positive length path in R from a to b.


By the definition of path, both R∗ and R+ are transitive. Since edges count as 
length one paths, the edges of R+ include all the edges of R. The edges of R∗ in 
turn include all the edges of R+ and, in addition include an edge (self-loop) from 
each vertex to itself. The self-loops get included in R∗ because of the a length zero 
paths in R. So R∗ is reflexive. 1 

8.2 Picturing Relational Properties 

Many of the relational properties we’ve discussed have natural descriptions in 
terms of paths. For example: 

Reflexivity: All vertices have self-loops (a self-loop at a vertex is an arrow going 
from the vertex back to itself). 

Irreflexivity: No vertices have self-loops. 

Antisymmetry: At most one (directed) edge between different vertices. 

1In many texts, R+ is called the transitive closure and R∗ is called the reflexive transitive closure of R. 
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Asymmetry: No self-loops and at most one (directed) edge between different ver­
tices. 

Transitivity: Short-circuits—for any path through the graph, there is an arrow 
from the first vertex to the last vertex on the path. 

Symmetry: A binary relation R is symmetric iff aRb implies bRa for all a, b in the 
domain of R. That is, if there is an edge from a to b, there is also one in the 
reverse direction. 

8.3 Composition of Relations 

There is a simple way to extend composition of functions to composition of rela­
tions, and this gives another way to talk about paths in digraphs. 

Let R : B C and S : A B be relations. Then the composition of R with S→ →
is the binary relation (R S) : A C defined by the rule ◦ → 

a (R ◦ S) c ::= ∃b ∈ B. (b R c) AND (a S b). 

This agrees with the Definition 4.3.1 of composition in the special case when R and 
S are functions. 

Now when R is a digraph, it makes sense to compose R with itself. Then if we 
let Rn denote the composition of R with itself n times, it’s easy to check that Rn is 
the length-n path relation: 

a Rn b iff there is a length n path in R from a to b. 

This even works for n = 0, if we adopt the convention that R0 is the identity 
relation IdA on the set, A, of vertices. That is, (a IdA b) iff a = b. 

8.4 Directed Acyclic Graphs 

Definition 8.4.1. A cycle in a digraph is defined by a path that begins and ends at 
the same vertex. This includes the cycle of length zero that begins and ends at the 
vertex. A directed acyclic graph (DAG) is a directed graph with no positive length 
cycles. 

A simple cycle in a digraph is a cycle whose vertices are distinct except for the 
beginning and end vertices. 

DAG’s can be an economical way to represent partial orders. For example, the 
direct prerequisite relation between MIT subjects in Chapter 7 was used to determine 
the partial order of indirect prerequisites on subjects. This indirect prerequisite 
partial order is precisely the positive length path relation of the direct prerequisites. 

Lemma 8.4.2. If D is a DAG, then D+ is a strict partial order. 
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Proof. We know that D+ is transitive. Also, a positive length path from a vertex to 
itself would be a cycle, so there are no such paths. This means D+ is irreflexive, 
which implies it is a strict partial order (see problem 7.8). � 

It’s easy to check that conversely, the graph of any strict partial order is a DAG. 
The divisibility partial order can also be more economically represented by the 

path relation in a DAG. A DAG whose path relation is divisibility on {1, 2, . . . , 12}
is shown in Figure 8.2; the arrowheads are omitted in the Figure, and edges are 
understood to point upwards. 
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Figure 8.2: A DAG whose Path Relation is Divisibility on {1, 2, . . . , 12}. 

If we’re using a DAG to represent a partial order —so all we care about is the 
the path relation of the DAG —we could replace the DAG with any other DAG 
with the same path relation. This raises the question of finding a DAG with the 
same path relation but the smallest number of edges. This DAG turns out to be 
unique and easy to find (see problem 8.2). 

8.4.1 Problems 

Practice Problems 

Problem 8.1. 
Why is every strict partial order a DAG? 

Class Problems 

Problem 8.2. 
If a and b are distinct nodes of a digraph, then a is said to cover b if there is an edge 
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from a to b and every path from a to b traverses this edge. If a covers b, the edge 
from a to b is called a covering edge. 
(a)	 What are the covering edges in the following DAG? 
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(b) Let covering (D) be the subgraph of D consisting of only the covering edges. 
Suppose D is a finite DAG. Explain why covering (D) has the same positive path 
relation as D. 
Hint: Consider longest paths between a pair of vertices. 

(c) Show that if two DAG’s have the same positive path relation, then they have 
the same set of covering edges. 

(d) Conclude that covering (D) is the unique DAG with the smallest number of 
edges among all digraphs with the same positive path relation as D. 

The following examples show that the above results don’t work in general for 
digraphs with cycles. 
(e) Describe two graphs with vertices {1, 2} which have the same set of covering 

edges, but not the same positive path relation (Hint: Self-loops.) 

(f)	 (i) The complete digraph without self-loops on vertices 1, 2, 3 has edges be­
tween every two distinct vertices. What are its covering edges? 

(ii) What are the covering edges of the graph with vertices 1, 2, 3 and edges 1 
2, 2 → 3, 3 → 1? 

→ 

(iii) What about their positive path relations? 

Homework Problems 

Problem 8.3. 
Let R be a binary relation on a set A. Then Rn denotes the composition of R with 
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itself n times. Let GR be the digraph associated with R. That is, A is the set of 
vertices ofGR and R is the set of directed edges. Let R(n) denote the length n path 
relation GR, that is, 

a R(n) b ::= there is a length n path from a to b in GR. 

Prove that 
Rn = R(n) (8.1) 

for all n ∈ N. 

Problem 8.4. (a) Prove that if R is a relation on a finite set, A, then 

a (R ∪ IA)n b iff there is a path in R of length length ≤ n from a to b. 

(b)	 Conclude that if A is a finite set, then 

R∗ = (R ∪ IA)|A|−1 . (8.2) 
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