
Chapter 7 

Partial Orders 

Partial orders are a kind of binary relation that come up a lot. The familiar ≤ order 
on numbers is a partial order, but so is the containment relation on sets and the 
divisibility relation on integers. 

Partial orders have particular importance in computer science because they 
capture key concepts used, for example, in solving task scheduling problems, ana­
lyzing concurrency control, and proving program termination. 

7.1 Axioms for Partial Orders 

The prerequisite structure among MIT subjects provides a nice illustration of par­
tial orders. Here is a table indicating some of the prerequisites of subjects in the 
the Course 6 program of Spring ’07: 

Direct Prerequisites Subject 
18.01 6.042 
18.01 18.02 
18.01 18.03 
8.01 8.02 
6.001 6.034 
6.042 6.046 
18.03, 8.02 6.002 
6.001, 6.002 6.004 
6.001, 6.002 6.003 
6.004 6.033 
6.033 6.857 
6.046 6.840 

Since 18.01 is a direct prerequisite for 6.042, a student must take 18.01 before 
6.042. Also, 6.042 is a direct prerequisite for 6.046, so in fact, a student has to take 
both 18.01 and 6.042 before taking 6.046. So 18.01 is also really a prerequisite for 
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6.046, though an implicit or indirect one; we’ll indicate this by writing 

18.01 6.046.→ 

This prerequisite relation has a basic property known as transitivity: if subject a 
is an indirect prerequisite of subject b, and b is an indirect prerequisite of subject c, 
then a is also an indirect prerequisite of c. 

In this table, a longest sequence of prerequisites is 

18.01 18.03 6.002 6.004 6.033 6.857→ → → → → 

so a student would need at least six terms to work through this sequence of sub­
jects. But it would take a lot longer to complete a Course 6 major if the direct 
prerequisites led to a situation1 where two subjects turned out to be prerequisites 
of each other! So another crucial property of the prerequisite relation is that if a b, 
then it is not the case that b a. This property is called asymmetry. 

→ 
→

Another basic example of a partial order is the subset relation, ⊆, on sets. In 
fact, we’ll see that every partial order can be represented by the subset relation. 

Definition 7.1.1. A binary relation, R, on a set A is: 

• transitive iff [a R b and b R c] IMPLIES a R c for every a, b, c ∈ A, 

• asymmetric iff a R b IMPLIES NOT(b R a) for all a, b ∈ A, 

• a strict partial order iff it is transitive and asymmetric. 

So the prerequisite relation, , on subjects in the MIT catalogue is a strict par­→
tial order. More familiar examples of strict partial orders are the relation, <, on real 
numbers, and the proper subset relation, ⊂, on sets. 

The subset relation, ⊆, on sets and ≤ relation on numbers are examples of re­
flexive relations in which each element is related to itself. Reflexive partial orders 
are called weak partial orders. Since asymmetry is incompatible with reflexivity, 
the asymmetry property in weak partial orders is relaxed so it applies only to two 
different elements. This relaxation of the asymmetry is called antisymmetry: 

Definition 7.1.2. A binary relation, R, on a set A, is 

• reflexive iff a R a for all a ∈ A, 

• antisymmetric iff a R b IMPLIES NOT(b R a) for all a =� b ∈ A, 

• a weak partial order iff it is transitive, reflexive and antisymmetric. 

Some authors define partial orders to be what we call weak partial orders, but 
we’ll use the phrase “partial order” to mean either a weak or strict one. 

For weak partial orders in general, we often write an ordering-style symbol like 
� or � instead of a letter symbol like R. (General relations are usually denoted 

1MIT’s Committee on Curricula has the responsibility of watching out for such bugs that might 
creep into departmental requirements. 



7.2. REPRESENTING PARTIAL ORDERS BY SET CONTAINMENT 111 

by a letter like R instead of a cryptic squiggly symbol, so � is kind of like the 
musical performer/composer Prince, who redefined the spelling of his name to 
be his own squiggly symbol. A few years ago he gave up and went back to the 
spelling “Prince.”) Likewise, we generally use � or � to indicate a strict partial 
order. 

Two more examples of partial orders are worth mentioning: 
Example 7.1.3. Let A be some family of sets and define a R b iff a ⊃ b. Then R is a 
strict partial order. 

For integers, m, n we write m | n to mean that m divides n, namely, there is an 
integer, k, such that n = km. 
Example 7.1.4. The divides relation is a weak partial order on the nonnegative in­
tegers. 

7.2 Representing Partial Orders by Set Containment 

Axioms can be a great way to abstract and reason about important properties of 
objects, but it helps to have a clear picture of the things that satisfy the axioms. 
We’ll show that every partial order can be pictured as a collection of sets related by 
containment. That is, every partial order has the “same shape” as such a collection. 
The technical word for “same shape” is “isomorphic.” 

Definition 7.2.1. A binary relation, R, on a set, A, is isomorphic to a relation, S, 
on a set D iff there is a relation-preserving bijection from A to D. That is, there is 
bijection f : A → D, such that for all a, a� ∈ A, 

a R a� iff f(a) S f(a�). 

Theorem 7.2.2. Every weak partial order, �, is isomorphic to the subset relation, on a 
collection of sets. 

To picture a partial order, �, on a set, A, as a collection of sets, we simply 
represent each element A by the set of elements that are � to that element, that is, 

a ←→ {b ∈ A | b � a} . 

For example, if � is the divisibility relation on the set of integers, {1, 3, 4, 6, 8, 12}, 
then we represent each of these integers by the set of integers in A that divides it. 
So 

1 ←→ {1}
3 ←→ {1, 3}
4 ←→ {1, 4}
6 ←→ {1, 3, 6}
8 ←→ {1, 4, 8}

12 ←→ {1, 3, 4, 6, 12} 
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So, the fact that 3 | 12 corresponds to the fact that {1, 3} ⊆ {1, 3, 4, 6, 12}. 
In this way we have completely captured the weak partial order � by the subset 

relation on the corresponding sets. Formally, we have 

Lemma 7.2.3. Let � be a weak partial order on a set, A. Then � is isomorphic to the 
subset relation on the collection of inverse images of elements a ∈ A under the � relation. 

We leave the proof to Problem 7.3. Essentially the same construction shows that 
strict partial orders can be represented by set under the proper subset relation, ⊂. 

7.2.1 Problems 

Class Problems 

Problem 7.1. 

Direct Prerequisites Subject 
18.01 6.042 
18.01 18.02 
18.01 18.03 
8.01 8.02 
8.01 6.01 
6.042 6.046 
18.02, 18.03, 8.02, 6.01 6.02 
6.01, 6.042 6.006 
6.01 6.034 
6.02 6.004 

(a) For the above table of MIT subject prerequisites, draw a diagram showing the 
subject numbers with a line going down to every subject from each of its (direct) 
prerequisites. 

(b) Give an example of a collection of sets partially ordered by the proper subset 
relation, ⊂, that is isomorphic to (“same shape as”) the prerequisite relation among 
MIT subjects from part (a). 

(c) Explain why the empty relation is a strict partial order and describe a collec­
tion of sets partially ordered by the proper subset relation that is isomorphic to the 
empty relation on five elements —that is, the relation under which none of the five 
elements is related to anything. 

(d) Describe a simple collection of sets partially ordered by the proper subset rela­
tion that is isomorphic to the ”properly contains” relation, ⊃, on P{1, 2, 3, 4}. 

Problem 7.2. 
Consider the proper subset partial order, ⊂, on the power set P{1, 2, . . . , 6}. 
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(a) What is the size of a maximal chain in this partial order? Describe one. 

(b) Describe the largest antichain you can find in this partial order. 

(c) What are the maximal and minimal elements? Are they maximum and mini­
mum? 

(d) Answer the previous part for the ⊂ partial order on the set P{1, 2, . . . , 6} − ∅. 

Homework Problems 

Problem 7.3. 
This problem asks for a proof of Lemma 7.2.3 showing that every weak partial 
order can be represented by (is isomorphic to) a collection of sets partially ordered 
under set inclusion (⊆). Namely, 

Lemma. Let � be a weak partial order on a set, A. For any element a ∈ A, let 

L(a) ::= {b ∈ A | b � a} , 
L ::= {L(a) | a ∈ A} . 

Then the function L : A → L is an isomorphism from the � relation on A, to the subset 
relation on L. 

(a) Prove that the function L : A → L is a bijection. 

(b) Complete the proof by showing that 

a � b iff L(a) ⊆ L(b) (7.1) 

for all a, b ∈ A. 

7.3 Total Orders 

The familiar order relations on numbers have an important additional property: 
given two different numbers, one will be bigger than the other. Partial orders with 
this property are said to be total2 orders. 

Definition 7.3.1. Let R be a binary relation on a set, A, and let a, b be elements of 
A. Then a and b are comparable with respect to R iff [a R b OR b R a]. A partial 
order for which every two different elements are comparable is called a total order. 

So < and ≤ are total orders on R. On the other hand, the subset relation is 
not total, since, for example, any two different finite sets of the same size will be 
incomparable under ⊆. The prerequisite relation on Course 6 required subjects is 
also not total because, for example, neither 8.01 nor 6.001 is a prerequisite of the 
other. 

2“Total” is an overloaded term when talking about partial orders: being a total order is a much 
stronger condition than being a partial order that is a total relation. For example, any weak partial 
order such as ⊆ is a total relation. 
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7.3.1 Problems 

Practice Problems 

Problem 7.4. 
For each of the binary relations below, state whether it is a strict partial order, a 
weak partial order, or neither. If it is not a partial order, indicate which of the 
axioms for partial order it violates. If it is a partial order, state whether it is a total 
order and identify its maximal and minimal elements, if any. 
(a) The superset relation, ⊇ on the power set P{1, 2, 3, 4, 5}. 

(b) The relation between any two nonegative integers, a, b that the remainder of 
a divided by 8 equals the remainder of b divided by 8. 

(c) The relation between propositional formulas, G, H , that G IMPLIES H is valid. 

(d) The relation ’beats’ on Rock, Paper and Scissor (for those who don’t know the 
game Rock, Paper, Scissors, Rock beats Scissors, Scissors beats Paper and Paper 
beats Rock). 

(e) The empty relation on the set of real numbers. 

(f) The identity relation on the set of integers. 

(g) The divisibility relation on the integers, Z. 

Class Problems 

Problem 7.5. (a) Verify that the divisibility relation on the set of nonnegative inte­
gers is a weak partial order. 

(b) What about the divisibility relation on the set of integers? 

Problem 7.6. 
Consider the nonnegative numbers partially ordered by divisibility. 
(a) Show that this partial order has a unique minimal element. 

(b) Show that this partial order has a unique maximal element. 

(c) Prove that this partial order has an infinite chain. 

(d) An antichain in a partial order is a set of elements such that any two elements 
in the set are incomparable. Prove that this partial order has an infinite antichain. 
Hint: The primes. 

(e) What are the minimal elements of divisibility on the integers greater than 1? 
What are the maximal elements? 
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Problem 7.7. 
How many binary relations are there on the set {0, 1}? 

How many are there that are transitive?, . . . asymmetric?, . . . reflexive?, . . . irreflexive?, 
. . . strict partial orders?, . . . weak partial orders? 

Hint: There are easier ways to find these numbers than listing all the relations 
and checking which properties each one has. 

Problem 7.8. 
A binary relation, R, on a set, A, is irreflexive iff NOT(a R a) for all a ∈ A. Prove 
that if a binary relation on a set is transitive and irreflexive, then it is strict partial 
order. 

Problem 7.9. 
Prove that if R is a partial order, then so is R−1 

Homework Problems 

Problem 7.10. 
Let R and S be binary relations on the same set, A. 

Definition 7.3.2. The composition, S R, of R and S is the binary relation on A 
defined by the rule:3 

◦ 

a (S ◦ R) c iff ∃b [a R b AND b S c]. 

Suppose both R and S are transitive. Which of the following new relations 
must also be transitive? For each part, justify your answer with a brief argument 
if the new relation is transitive and a counterexample if it is not. 
(a) R−1 

(b) R ∩ S 

(c) R R◦ 

(d) R S◦ 

Exam Problems 

Problem 7.11. 

3Note the reversal in the order of R and S. This is so that relational composition generalizes function 
composition, Composing the functions f and g means that f is applied first, and then g is applied to 
the result. That is, the value of the composition of f and g applied to an argument, x, is g(f(x)). To 
reflect this, the notation g f is commonly used for the composition of f and g. Some texts do define 
g f the other way around. 

◦ 
◦ 
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(a) For each row in the following table, indicate whether the binary relation, R, 
on the set, A, is a weak partial order or a total order by filling in the appropriate 
entries with either Y = YES or N = NO. In addition, list the minimal and maximal 
elements for each relation. 

A a R b weak partial order total order minimal(s) maximal(s) 

R − R+ a | b 

P({1, 2, 3}) a ⊆ b 

N ∪ {i} a > b 

(b) What is the longest chain on the subset relation, ⊆, on P ({1, 2, 3})? (If there is 
more than one, provide ONE of them.) 

(c) What is the longest antichain on the subset relation, ⊆, on P ({1, 2, 3})? (If there 
is more than one, provide one of them.) 

7.4 Product Orders 

Taking the product of two relations is a useful way to construct new relations from 
old ones. 

Definition 7.4.1. The product, R1 × R2, of relations R1 and R2 is defined to be the 
relation with 

domain (R1 × R2) ::= domain (R1) × domain (R2) , 
codomain (R1 × R2) ::= codomain (R1) × codomain (R2) , 

(a1, a2) (R1 × R2) (b1, b2) iff [a1 R1 b1 and a2 R2 b2]. 

Example 7.4.2. Define a relation, Y , on age-height pairs of being younger and shorter. 
This is the relation on the set of pairs (y, h) where y is a nonnegative integer ≤ 2400 
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which we interpret as an age in months, and h is a nonnegative integer ≤ 120 de­
scribing height in inches. We define Y by the rule 

(y1, h1) Y (y2, h2) iff y1 ≤ y2 AND h1 ≤ h2. 

That is, Y is the product of the ≤-relation on ages and the ≤-relation on heights. 

It follows directly from the definitions that products preserve the properties of 
transitivity, reflexivity, irreflexivity, and antisymmetry, as shown in Problem 7.12. 
That is, if R1 and R2 both have one of these properties, then so does R1 × R2. This 
implies that if R1 and R2 are both partial orders, then so is R1 × R2. 

On the other hand, the property of being a total order is not preserved. For 
example, the age-height relation Y is the product of two total orders, but it is not 
total: the age 240 months, height 68 inches pair, (240,68), and the pair (228,72) are 
incomparable under Y . 

7.4.1 Problems 

Class Problems 

Problem 7.12. 
Let R1, R2 be binary relations on the same set, A. A relational property is preserved 
under product, if R1 × R2 has the property whenever both R1 and R2 have the 
property. 
(a) Verify that each of the following properties are preserved under product. 

1. reflexivity, 

2. antisymmetry, 

3. transitivity. 

(b) Verify that if either of R1 or R2 is irreflexive, then so is R1 × R2. 
Note that it now follows immediately that if if R1 and R2 are partial orders and 

at least one of them is strict, then R1 × R2 is a strict partial order. 

7.5 Scheduling 

Scheduling problems are a common source of partial orders: there is a set, A, of 
tasks and a set of constraints specifying that starting a certain task depends on 
other tasks being completed beforehand. We can picture the constraints by draw­
ing labelled boxes corresponding to different tasks, with an arrow from one box to 
another if the first box corresponds to a task that must be completed before starting 
the second one. 
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Example 7.5.1. Here is a drawing describing the order in which you could put on 
clothes. The tasks are the clothes to be put on, and the arrows indicate what should 
be put on directly before what. 

left sock right sock 

left shoe right shoe belt 

pants 

underwear shirt 

sweater 

jacket 

When we have a partial order of tasks to be performed, it can be useful to have 
an order in which to perform all the tasks, one at a time, while respecting the 
dependency constraints. This amounts to finding a total order that is consistent 
with the partial order. This task of finding a total ordering that is consistent with a 
partial order is known as topological sorting. 

Definition 7.5.2. A topological sort of a partial order, �, on a set, A, is a total order­
ing, �, on A such that 

a � b IMPLIES a � b. 

For example, 

shirt � sweater � underwear � leftsock � rightsock � pants 
� leftshoe � rightshoe � belt � jacket, 

is one topological sort of the partial order of dressing tasks given by Example 7.5.1; 
there are several other possible sorts as well. 

Topological sorts for partial orders on finite sets are easy to construct by starting 
from minimal elements: 

Definition 7.5.3. Let � be a partial order on a set, A. An element a0 ∈ A is minimum 
iff it is � every other element of A, that is, a0 � b for all b =� a0. 

The element a0 is minimal iff no other element is � a0, that is, NOT(b � a0) for 
all b = a0. 

There are corresponding definitions for maximum and maximal. Alternatively, a 
maximum(al) element for a relation, R, could be defined to be as a minimum(al) 
element for R−1 . 

In a total order, minimum and minimal elements are the same thing. But a 
partial order may have no minimum element but lots of minimal elements. There 
are four minimal elements in the clothes example: leftsock, rightsock, underwear, 
and shirt. 
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To construct a total ordering for getting dressed, we pick one of these minimal 
elements, say shirt. Next we pick a minimal element among the remaining ones. 
For example, once we have removed shirt, sweater becomes minimal. We con­
tinue in this way removing successive minimal elements until all elements have 
been picked. The sequence of elements in the order they were picked will be a 
topological sort. This is how the topological sort above for getting dressed was 
constructed. 

So our construction shows: 

Theorem 7.5.4. Every partial order on a finite set has a topological sort. 

There are many other ways of constructing topological sorts. For example, in­
stead of starting “from the bottom” with minimal elements, we could build a total 
starting anywhere and simply keep putting additional elements into the total order 
wherever they will fit. In fact, the domain of the partial order need not even be 
finite: we won’t prove it, but all partial orders, even infinite ones, have topological 
sorts. 

7.5.1 Parallel Task Scheduling 

For a partial order of task dependencies, topological sorting provides a way to 
execute tasks one after another while respecting the dependencies. But what if we 
have the ability to execute more than one task at the same time? For example, say 
tasks are programs, the partial order indicates data dependence, and we have a 
parallel machine with lots of processors instead of a sequential machine with only 
one. How should we schedule the tasks? Our goal should be to minimize the total 
time to complete all the tasks. For simplicity, let’s say all the tasks take the same 
amount of time and all the processors are identical. 

So, given a finite partially ordered set of tasks, how long does it take to do 
them all, in an optimal parallel schedule? We can also use partial order concepts 
to analyze this problem. 

In the clothes example, we could do all the minimal elements first (leftsock, 
rightsock, underwear, shirt), remove them and repeat. We’d need lots of hands, 
or maybe dressing servants. We can do pants and sweater next, and then leftshoe, 
rightshoe, and belt, and finally jacket. 

In general, a schedule for performing tasks specifies which tasks to do at succes­
sive steps. Every task, a, has be scheduled at some step, and all the tasks that have 
to be completed before task a must be scheduled for an earlier step. 

Definition 7.5.5. A parallel schedule for a strict partial order, �, on a set, A, is a 
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partition4 of A into sets A0, A1, . . . , such that for all a, b ∈ A, k ∈ N, 

[a ∈ Ak AND b � a] IMPLIES b ∈ Aj for some j < k. 

The set Ak is called the set of elements scheduled at step k, and the length of the 
schedule is the number of sets Ak in the partition. The maximum number of el­
ements scheduled at any step is called the number of processors required by the 
schedule. 

So the schedule we chose above for clothes has four steps 

A0 = {leftsock, rightsock, underwear, shirt} , 
A1 = {pants, sweater} , 
A2 = {leftshoe, rightshoe, belt} , 
A3 = {jacket} . 

and requires four processors (to complete the first step). 
Notice that the dependencies constrain the tasks underwear, pants, belt, and 

jacket to be done in sequence. This implies that at least four steps are needed in 
every schedule for getting dressed, since if we used fewer than four steps, two of 
these tasks would have to be scheduled at the same time. A set of tasks that must 
be done in sequence like this is called a chain. 

Definition 7.5.6. A chain in a partial order is a set of elements such that any two 
different elements in the set are comparable. A chain is said to end at an its maxi­
mum element. 

In general, the earliest step at which an element a can ever be scheduled must 
be at least as large as any chain that ends at a. A largest chain ending at a is called 
a critical path to a, and the size of the critical path is called the depth of a. So in any 
possible parallel schedule, it takes at least depth (a) steps to complete task a. 

There is a very simple schedule that completes every task in this minimum 
number of steps. Just use a “greedy” strategy of performing tasks as soon as pos­
sible. Namely, schedule all the elements of depth k at step k. That’s how we found 
the schedule for getting dressed given above. 

Theorem 7.5.7. Let � be a strict partial order on a set, A. A minimum length schedule 
for � consists of the sets A0, A1, . . . , where 

Ak ::= {a | depth (a) = k} . 

4Partitioning a set, A, means “cutting it up” into non-overlapping, nonempty pieces. The pieces are 
called the blocks of the partition. More precisely, a partition of A is a set B whose elements are nonempty 
subsets of A such that 

• if B, B� ∈ B are different sets, then B ∩ B� = ∅, and S 
• B = A.B∈B 
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We’ll leave to Problem 7.19 the proof that the sets Ak are a parallel schedule 
according to Definition 7.5.5. 

The minimum number of steps needed to schedule a partial order, �, is called 
the parallel time required by �, and a largest possible chain in � is called a critical 
path for �. So we can summarize the story above by this way: with an unlimited 
number of processors, the minimum parallel time to complete all tasks is simply 
the size of a critical path: 

Corollary 7.5.8. Parallel time = length of critical path. 

7.6 Dilworth’s Lemma 

Definition 7.6.1. An antichain in a partial order is a set of elements such that any 
two elements in the set are incomparable. 

Our conclusions about scheduling also tell us something about antichains. 

Corollary 7.6.2. If the largest chain in a partial order on a set, A, is of size t, then A can 
be partitioned into t antichains. 

Proof. Let the antichains be the sets Ak ::= {a | depth (a) = k}. It is an easy exercise 
to verify that each Ak is an antichain (Problem 7.19) � 

Corollary 7.6.2 implies a famous result5 about partially ordered sets: 

Lemma 7.6.3 (Dilworth). For all t > 0, every partially ordered set with n elements must 
have either a chain of size greater than t or an antichain of size at least n/t. 

Proof. Assume there is no chain of size greater than t, that is, the largest chain is of 
size ≤ t. Then by Corollary 7.6.2, the n elements can be partitioned into at most t 
antichains. Let � be the size of the largest antichain. Since every element belongs 
to exactly one antichain, and there are at most t antichains, there can’t be more 
than �t elements, namely, �t ≥ n. So there is an antichain with at least � ≥ n/t 
elements. � 

Corollary 7.6.4. Every partially ordered set with n elements has a chain of size greater 
than 

√
n or an antichain of size at least 

√
n. 

Proof. Set t = 
√

n in Lemma 7.6.3. � 

Example 7.6.5. In the dressing partially ordered set, n = 10. 
Try t = 3. There is a chain of size 4. 
Try t = 4. There is no chain of size 5, but there is an antichain of size 4 ≥ 10/4. 

5Lemma 7.6.3 also follows from a more general result known as Dilworth’s Theorem which we will 
not discuss. 
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Example 7.6.6. Suppose we have a class of 101 students. Then using the product 
partial order, Y , from Example 7.4.2, we can apply Dilworth’s Lemma to conclude 
that there is a chain of 11 students who get taller as they get older, or an antichain 
of 11 students who get taller as they get younger, which makes for an amusing 
in-class demo. 

7.6.1 Problems 

Practice Problems 

Problem 7.13. 
What is the size of the longest chain that is guaranteed to exist in any partially 
ordered set of n elements? What about the largest antichain? 

Problem 7.14. 
Describe a sequence consisting of the integers from 1 to 10,000 in some order so 
that there is no increasing or decreasing subsequence of size 101. 

Problem 7.15. 
What is the smallest number of partially ordered tasks for which there can be more 
than one minimum time schedule? Explain. 

Class Problems 

Problem 7.16. 
The table below lists some prerequisite information for some subjects in the MIT 
Computer Science program (in 2006). This defines an indirect prerequisite relation, 
�, that is a strict partial order on these subjects. 

18.01 6.042 18.01 18.02→ → 

18.01 18.03 6.046 6.840→ → 

8.01 8.02 6.001 6.034→ → 

6.042 6.046 18.03, 8.02 6.002→ → 

6.001, 6.002 6.003 6.001, 6.002 6.004→ → 

6.004 6.033 6.033 6.857→ → 

(a) Explain why exactly six terms are required to finish all these subjects, if you 
can take as many subjects as you want per term. Using a greedy subject selection 
strategy, you should take as many subjects as possible each term. Exhibit your 
complete class schedule each term using a greedy strategy. 

(b) In the second term of the greedy schedule, you took five subjects including 
18.03. Identify a set of five subjects not including 18.03 such that it would be possi­
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ble to take them in any one term (using some nongreedy schedule). Can you figure 
out how many such sets there are? 

(c) Exhibit a schedule for taking all the courses —but only one per term. 

(d) Suppose that you want to take all of the subjects, but can handle only two per 
term. Exactly how many terms are required to graduate? Explain why. 

(e) What if you could take three subjects per term? 

Problem 7.17. 
A pair of 6.042 TAs, Liz and Oscar, have decided to devote some of their spare 
time this term to establishing dominion over the entire galaxy. Recognizing this as 
an ambitious project, they worked out the following table of tasks on the back of 
Oscar’s copy of the lecture notes. 

1.	 Devise a logo and cool imperial theme music - 8 days. 

2.	 Build a fleet of Hyperwarp Stardestroyers out of eating paraphernalia swiped 
from Lobdell - 18 days. 

3.	 Seize control of the United Nations - 9 days, after task #1. 

4.	 Get shots for Liz’s cat, Tailspin - 11 days, after task #1. 

5.	 Open a Starbucks chain for the army to get their caffeine - 10 days, after task 
#3. 

6.	 Train an army of elite interstellar warriors by dragging people to see The 
Phantom Menace dozens of times - 4 days, after tasks #3, #4, and #5. 

7.	 Launch the fleet of Stardestroyers, crush all sentient alien species, and estab­
lish a Galactic Empire - 6 days, after tasks #2 and #6. 

8.	 Defeat Microsoft - 8 days, after tasks #2 and #6. 

We picture this information in Figure 7.1 below by drawing a point for each 
task, and labelling it with the name and weight of the task. An edge between 
two points indicates that the task for the higher point must be completed before 
beginning the task for the lower one. 
(a) Give some valid order in which the tasks might be completed. 

Liz and Oscar want to complete all these tasks in the shortest possible time. 
However, they have agreed on some constraining work rules. 

•	 Only one person can be assigned to a particular task; they can not work to­
gether on a single task. 
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Figure 7.1: Graph representing the task precedence constraints. 
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•	 Once a person is assigned to a task, that person must work exclusively on 
the assignment until it is completed. So, for example, Liz cannot work on 
building a fleet for a few days, run to get shots for Tailspin, and then return 
to building the fleet. 

(b) Liz and Oscar want to know how long conquering the galaxy will take. Oscar 
suggests dividing the total number of days of work by the number of workers, 
which is two. What lower bound on the time to conquer the galaxy does this give, 
and why might the actual time required be greater? 

(c) Liz proposes a different method for determining the duration of their project. 
He suggests looking at the duration of the “critical path”, the most time-consuming 
sequence of tasks such that each depends on the one before. What lower bound 
does this give, and why might it also be too low? 

(d) What is the minimum number of days that Liz and Oscar need to conquer the 
galaxy? No proof is required. 

Problem 7.18. (a) What are the maximal and minimal elements, if any, of the power 
set P({1, . . . , n}), where n is a positive integer, under the empty relation? 

(b) What are the maximal and minimal elements, if any, of the set, N, of all non­
negative integers under divisibility? Is there a minimum or maximum element? 

(c) What are the minimal and maximal elements, if any, of the set of integers 
greater than 1 under divisibility? 

(d) Describe a partially ordered set that has no minimal or maximal elements. 

(e) Describe a partially ordered set that has a unique minimal element, but no min­
imum element. Hint: It will have to be infinite. 

Homework Problems 

Problem 7.19. 
Let � be a partial order on a set, A, and let 

Ak ::= {a | depth (a) = k} 

where k ∈ N. 
(a) Prove that A0, A1, . . . is a parallel schedule for � according to Definition 7.5.5. 

(b) Prove that Ak is an antichain. 

Problem 7.20. 
Let S be a sequence of n different numbers. A subsequence of S is a sequence that 
can be obtained by deleting elements of S. 
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For example, if 
S = (6, 4, 7, 9, 1, 2, 5, 3, 8) 

Then 647 and 7253 are both subsequences of S (for readability, we have dropped 
the parentheses and commas in sequences, so 647 abbreviates (6, 4, 7), for exam­
ple). 

An increasing subsequence of S is a subsequence of whose successive elements 
get larger. For example, 1238 is an increasing subsequence of S. Decreasing subse­
quences are defined similarly; 641 is a decreasing subsequence of S. 
(a) List all the maximum length increasing subsequences of S, and all the maxi­

mum length decreasing subsequences. 
Now let A be the set of numbers in S. (So A = {1, 2, 3, . . . , 9} for the example 

above.) There are two straightforward ways to totally order A. The first is to order 
its elements numerically, that is, to order A with the < relation. The second is to 
order the elements by which comes first in S; call this order <S . So for the example 
above, we would have 

6 <S 4 <S 7 <S 9 <S 1 <S 2 <S 5 <S 3 <S 8 

Next, define the partial order � on A defined by the rule 

a � a� ::= a < a� and a <S a
�. 

(It’s not hard to prove that � is strict partial order, but you may assume it.) 
(b) Draw a diagram of the partial order, �, on A. What are the maximal ele­

ments,. . . the minimal elements? 

(c) Explain the connection between increasing and decreasing subsequences of S, 
and chains and anti-chains under �. 

(d) Prove that every sequence, S, of length n has an increasing subsequence of 
length greater than 

√
n or a decreasing subsequence of length at least 

√
n. 

(e) (Optional, tricky) Devise an efficient procedure for finding the longest increas­
ing and the longest decreasing subsequence in any given sequence of integers. 
(There is a nice one.) 

Problem 7.21. 
We want to schedule n partially ordered tasks. 
(a) Explain why any schedule that requires only p processors must take time at 

least �n/p�. 

(b) Let Dn,t be the strict partial order with n elements that consists of a chain of 
t − 1 elements, with the bottom element in the chain being a prerequisite of all the 
remaining elements as in the following figure: 
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. . .

. .
 . t - 1

n - (t - 1)

What is the minimum time schedule for Dn,t? Explain why it is unique. How 
many processors does it require? 

(c) Write a simple formula, M(n, t, p), for the minimum time of a p-processor 
schedule to complete Dn,t. 

(d) Show that every partial order with n vertices and maximum chain size, t, has 
a p-processor schedule that runs in time M(n, t, p). 

Hint: Induction on t. 
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