
Chapter 6 

Induction 

Induction is by far the most powerful and commonly-used proof technique in dis­
crete mathematics and computer science. In fact, the use of induction is a defining 
characteristic of discrete —as opposed to continuous —mathematics. To understand 
how it works, suppose there is a professor who brings to class a bottomless bag of 
assorted miniature candy bars. She offers to share the candy in the following way. 
First, she lines the students up in order. Next she states two rules: 

1. The student at the beginning of the line gets a candy bar. 

2. If a student gets a candy bar, then the following student in line also gets a 
candy bar. 

Let’s number the students by their order in line, starting the count with 0, as usual 
in Computer Science. Now we can understand the second rule as a short descrip­
tion of a whole sequence of statements: 

• If student 0 gets a candy bar, then student 1 also gets one. 

• If student 1 gets a candy bar, then student 2 also gets one. 

•	 If student 2 gets a candy bar, then student 3 also gets one.

.
. . 

Of course this sequence has a more concise mathematical description: 

If student n gets a candy bar, then student n +1 gets a candy bar, for all 
nonnegative integers n. 

So suppose you are student 17. By these rules, are you entitled to a miniature candy 
bar? Well, student 0 gets a candy bar by the first rule. Therefore, by the second rule, 
student 1 also gets one, which means student 2 gets one, which means student 3 
gets one as well, and so on. By 17 applications of the professor’s second rule, you 
get your candy bar! Of course the rules actually guarantee a candy bar to every 
student, no matter how far back in line they may be. 
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6.1 Ordinary Induction 

The reasoning that led us to conclude every student gets a candy bar is essentially 
all there is to induction. 

The Principle of Induction. 

Let P (n) be a predicate. If 

• P (0) is true, and 

• P (n) IMPLIES P (n + 1) for all nonnegative integers, n, 

then 

• P (m) is true for all nonnegative integers, m. 

Since we’re going to consider several useful variants of induction in later sec­
tions, we’ll refer to the induction method described above as ordinary induction 
when we need to distinguish it. Formulated as a proof rule, this would be 

Rule. Induction Rule 

P (0), ∀n ∈ N [P (n) IMPLIES P (n + 1)] 
∀m ∈ N. P (m) 

This general induction rule works for the same intuitive reason that all the stu­
dents get candy bars, and we hope the explanation using candy bars makes it clear 
why the soundness of the ordinary induction can be taken for granted. In fact, the 
rule is so obvious that it’s hard to see what more basic principle could be used to 
justify it.1 What’s not so obvious is how much mileage we get by using it. 

6.1.1 Using Ordinary Induction 

Ordinary induction often works directly in proving that some statement about 
nonnegative integers holds for all of them. For example, here is the formula for 
the sum of the nonnegative integer that we already proved (equation (2.2)) using 
the Well Ordering Principle: 

Theorem 6.1.1. For all n ∈ N, 

n(n + 1) 
1 + 2 + 3 + + n = (6.1)· · · 

2 
1But see section 6.3. 
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This time, let’s use the Induction Principle to prove Theorem 6.1.1. 
Suppose that we define predicate P (n) to be the equation (6.1). Recast in terms 

of this predicate, the theorem claims that P (n) is true for all n ∈ N. This is great, 
because the induction principle lets us reach precisely that conclusion, provided 
we establish two simpler facts: 

•	 P (0) is true. 

•	 For all n ∈ N, P (n) IMPLIES P (n + 1). 

So now our job is reduced to proving these two statements. The first is true 
because P (0) asserts that a sum of zero terms is equal to 0(0 + 1)/2 = 0, which is 
true by definition. The second statement is more complicated. But remember the 
basic plan for proving the validity of any implication: assume the statement on the 
left and then prove the statement on the right. In this case, we assume P (n) in order 
to prove P (n + 1), which is the equation 

(n + 1)(n + 2) 
1 + 2 + 3 + + n + (n + 1) = . (6.2)· · ·	

2 

These two equations are quite similar; in fact, adding (n +1) to both sides of equa­
tion (6.1) and simplifying the right side gives the equation (6.2): 

n(n + 1) 
1 + 2 + 3 + + n + (n + 1) = + (n + 1) · · · 

2 
(n + 2)(n + 1) 

= 
2 

Thus, if P (n) is true, then so is P (n + 1). This argument is valid for every non­
negative integer n, so this establishes the second fact required by the induction 
principle. Therefore, the induction principle says that the predicate P (m) is true 
for all nonnegative integers, m, so the theorem is proved. 

6.1.2 A Template for Induction Proofs 

The proof of Theorem 6.1.1 was relatively simple, but even the most complicated 
induction proof follows exactly the same template. There are five components: 

1.	 State that the proof uses induction. This immediately conveys the overall 
structure of the proof, which helps the reader understand your argument. 

2.	 Define an appropriate predicate P (n). The eventual conclusion of the in­
duction argument will be that P (n) is true for all nonnegative n. Thus, you 
should define the predicate P (n) so that your theorem is equivalent to (or fol­
lows from) this conclusion. Often the predicate can be lifted straight from the 
claim, as in the example above. The predicate P (n) is called the induction hy­
pothesis. Sometimes the induction hypothesis will involve several variables, 
in which case you should indicate which variable serves as n. 
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3.	 Prove that P (0) is true. This is usually easy, as in the example above. This 
part of the proof is called the base case or basis step. 

4.	 Prove that P (n) implies P (n + 1) for every nonnegative integer n. This is 
called the inductive step. The basic plan is always the same: assume that P (n) 
is true and then use this assumption to prove that P (n +1) is true. These two 
statements should be fairly similar, but bridging the gap may require some 
ingenuity. Whatever argument you give must be valid for every nonnegative 
integer n, since the goal is to prove the implications P (0) P (1), P (1) 
P (2), P (2) → P (3), etc. all at once. 

→ → 

5.	 Invoke induction. Given these facts, the induction principle allows you to 
conclude that P (n) is true for all nonnegative n. This is the logical capstone 
to the whole argument, but it is so standard that it’s usual not to mention it 
explicitly, 

Explicitly labeling the base case and inductive step may make your proofs clearer. 

6.1.3 A Clean Writeup 

The proof of Theorem 6.1.1 given above is perfectly valid; however, it contains a 
lot of extraneous explanation that you won’t usually see in induction proofs. The 
writeup below is closer to what you might see in print and should be prepared to 
produce yourself. 

Proof. We use induction. The induction hypothesis, P (n), will be equation (6.1). 
Base case: P (0) is true, because both sides of equation (6.1) equal zero when 

n = 0. 
Inductive step: Assume that P (n) is true, where n is any nonnegative integer. 

Then 

n(n + 1) 
1 + 2 + 3 + + n + (n + 1) = + (n + 1) (by induction hypothesis) · · · 

2

(n + 1)(n + 2)


=	 (by simple algebra) 
2 

which proves P (n + 1). 
So it follows by induction that P (n) is true for all nonnegative n. � 

Induction was helpful for proving the correctness of this summation formula, but 
not helpful for discovering it in the first place. Tricks and methods for finding such 
formulas will appear in a later chapter. 

6.1.4 Courtyard Tiling 

During the development of MIT’s famous Stata Center, costs rose further and fur­
ther over budget, and there were some radical fundraising ideas. One rumored 
plan was to install a big courtyard with dimensions 2n × 2n: 



95 6.1. ORDINARY INDUCTION 

2n 

2n 

One of the central squares would be occupied by a statue of a wealthy potential 
donor. Let’s call him “Bill”. (In the special case n = 0, the whole courtyard consists 
of a single central square; otherwise, there are four central squares.) A complica­
tion was that the building’s unconventional architect, Frank Gehry, was alleged to 
require that only special L-shaped tiles be used: 

A courtyard meeting these constraints exists, at least for n = 2: 

B 

For larger values of n, is there a way to tile a 2n × 2n courtyard with L-shaped 
tiles and a statue in the center? Let’s try to prove that this is so. 

Theorem 6.1.2. For all n ≥ 0 there exists a tiling of a 2n × 2n courtyard with Bill in a 
central square. 

Proof. (doomed attempt) The proof is by induction. Let P (n) be the proposition that 
there exists a tiling of a 2n × 2n courtyard with Bill in the center. 

Base case: P (0) is true because Bill fills the whole courtyard. 
Inductive step: Assume that there is a tiling of a 2n × 2n courtyard with Bill in 

the center for some n ≥ 0. We must prove that there is a way to tile a 2n+1 × 2n+1 

courtyard with Bill in the center . . . . � 

Now we’re in trouble! The ability to tile a smaller courtyard with Bill in the 
center isn’t much help in tiling a larger courtyard with Bill in the center. We haven’t 
figured out how to bridge the gap between P (n) and P (n + 1). 
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So if we’re going to prove Theorem 6.1.2 by induction, we’re going to need 
some other induction hypothesis than simply the statement about n that we’re try­
ing to prove. 

When this happens, your first fallback should be to look for a stronger induction 
hypothesis; that is, one which implies your previous hypothesis. For example, 
we could make P (n) the proposition that for every location of Bill in a 2n × 2n 

courtyard, there exists a tiling of the remainder. 
This advice may sound bizarre: “If you can’t prove something, try to prove 

something grander!” But for induction arguments, this makes sense. In the induc­
tive step, where you have to prove P (n) IMPLIES P (n + 1), you’re in better shape 
because you can assume P (n), which is now a more powerful statement. Let’s see 
how this plays out in the case of courtyard tiling. 

Proof. (successful attempt) The proof is by induction. Let P (n) be the proposition 
that for every location of Bill in a 2n × 2n courtyard, there exists a tiling of the 
remainder. 

Base case: P (0) is true because Bill fills the whole courtyard. 
Inductive step: Assume that P (n) is true for some n ≥ 0; that is, for every 

location of Bill in a 2n × 2n courtyard, there exists a tiling of the remainder. Divide 
the 2n+1 ×2n+1 courtyard into four quadrants, each 2n ×2n. One quadrant contains 
Bill (B in the diagram below). Place a temporary Bill (X in the diagram) in each of 
the three central squares lying outside this quadrant: 

X 

X X 

B 

2n 

a 

2n 

2n 2n 

Now we can tile each of the four quadrants by the induction assumption. Re­
placing the three temporary Bills with a single L-shaped tile completes the job. 
This proves that P (n) implies P (n + 1) for all n ≥ 0. The theorem follows as a 
special case. � 

This proof has two nice properties. First, not only does the argument guarantee 
that a tiling exists, but also it gives an algorithm for finding such a tiling. Second, 
we have a stronger result: if Bill wanted a statue on the edge of the courtyard, 
away from the pigeons, we could accommodate him! 
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Strengthening the induction hypothesis is often a good move when an induc­
tion proof won’t go through. But keep in mind that the stronger assertion must 
actually be true; otherwise, there isn’t much hope of constructing a valid proof! 
Sometimes finding just the right induction hypothesis requires trial, error, and in­
sight. For example, mathematicians spent almost twenty years trying to prove or 
disprove the conjecture that “Every planar graph is 5-choosable”2. Then, in 1994, 
Carsten Thomassen gave an induction proof simple enough to explain on a nap­
kin. The key turned out to be finding an extremely clever induction hypothesis; 
with that in hand, completing the argument is easy! 

6.1.5 A Faulty Induction Proof 

False Theorem. All horses are the same color. 

Notice that no n is mentioned in this assertion, so we’re going to have to re­
formulate it in a way that makes an n explicit. In particular, we’ll (falsely) prove 
that 

False Theorem 6.1.3. In every set of n ≥ 1 horses, all are the same color. 

This a statement about all integers n ≥ 1 rather ≥ 0, so it’s natural to use a 
slight variation on induction: prove P (1) in the base case and then prove that P (n) 
implies P (n +1) for all n ≥ 1 in the inductive step. This is a perfectly valid variant 
of induction and is not the problem with the proof below. 

False proof. The proof is by induction on n. The induction hypothesis, P (n), will 
be 

In every set of n horses, all are the same color. (6.3) 

Base case: (n = 1). P (1) is true, because in a set of horses of size 1, there’s only 
one horse, and this horse is definitely the same color as itself. 

Inductive step: Assume that P (n) is true for some n ≥ 1. that is, assume that 
in every set of n horses, all are the same color. Now consider a set of n + 1 horses: 

h1, h2, . . . , hn, hn+1 

By our assumption, the first n horses are the same color: 

h1, h2, . . . , hn, hn+1 

same color 

Also by our assumption, the last n horses are the same color: 

h1, h2, . . . , hn, hn+1 

same color 

25-choosability is a slight generalization of 5-colorability. Although every planar graph is 4-colorable 
and therefore 5-colorable, not every planar graph is 4-choosable. If this all sounds like nonsense, don’t 
panic. We’ll discuss graphs, planarity, and coloring in a later chapter. 
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So h1 is the same color as the remaining horses besides hn+1, and likewise hn+1 is 
the same color as the remaining horses besides h1. So h1 and hn+1 are the same 
color. That is, horses h1, h2, . . . , hn+1 must all be the same color, and so P (n + 1) is 
true. Thus, P (n) implies P (n + 1). 

By the principle of induction, P (n) is true for all n ≥ 1. � 

We’ve proved something false! Is math broken? Should we all become poets? 
No, this proof has a mistake. 

The error in this argument is in the sentence that begins, “So h1 and hn+1 are 
the same color.” The “. . . ” notation creates the impression that there are some 
remaining horses besides h1 and hn+1. However, this is not true when n = 1. In 
that case, the first set is just h1 and the second is h2, and there are no remaining 
horses besides them. So h1 and h2 need not be the same color! 

This mistake knocks a critical link out of our induction argument. We proved 
P (1) and we correctly proved P (2) −→ P (3), P (3) −→ P (4), etc. But we failed to 
prove P (1) −→ P (2), and so everything falls apart: we can not conclude that P (2), 
P (3), etc., are true. And, of course, these propositions are all false; there are horses 
of a different color. 

Students sometimes claim that the mistake in the proof is because P (n) is false 
for n ≥ 2, and the proof assumes something false, namely, P (n), in order to prove 
P (n + 1). You should think about how to explain to such a student why this claim 
would get no credit on a 6.042 exam. 

6.1.6 Problems 

Class Problems 

Problem 6.1. 
Use induction to prove that � �2 

13 + 23 + + n 3 = 
n(n + 1) 

. (6.4)· · · 
2 

for all n ≥ 1. 
Remember to formally 

1. Declare proof by induction. 

2. Identify the induction hypothesis P (n). 

3. Establish the base case. 

4. Prove that P (n) P (n + 1).⇒ 

5. Conclude that P (n) holds for all n ≥ 1. 

as in the five part template. 
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Problem 6.2. 
Prove by induction on n that 

r
1 + r + r 2 + + r n = 

n+1 − 1 
(6.5)· · · 

r − 1 

for all n ∈ N and numbers r = 1� . 

Problem 6.3. 
Prove by induction: 

1 1 1 1
1 + 

4 
+ 

9 
+ · · · + 

n2 
< 2 − 

n
, (6.6) 

for all n > 1. 

Problem 6.4. (a) Prove by induction that a 2n × 2n courtyard with a 1 × 1 statue of 
Bill in a corner can be covered with L-shaped tiles. (Do not assume or reprove the 
(stronger) result of Theorem 6.1.2 that Bill can be placed anywhere. The point of 
this problem is to show a different induction hypothesis that works.) 

(b) Use the result of part (a) to prove the original claim that there is a tiling with 
Bill in the middle. 

Problem 6.5. 
nFind the flaw in the following bogus proof that a = 1 for all nonnegative integers 

n, whenever a is a nonzero real number. 

Bogus proof. The proof is by induction on n, with hypothesis 

P (n) ::= ∀k ≤ n. a k = 1, 

where k is a nonnegative integer valued variable. 
Base Case: P (0) is equivalent to a0 = 1, which is true by definition of a0 . (By 

convention, this holds even if a = 0.) 
Inductive Step: By induction hypothesis, ak = 1 for all k ∈ N such that k ≤ n. 

But then 
n na a 1 1 

a n+1 = 
· 

= 
· 

= 1, 
an−1 1 

which implies that P (n + 1) holds. It follows by induction that P (n) holds for all 
nn ∈ N, and in particular, a = 1 holds for all n ∈ N. 
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Problem 6.6. 
We’ve proved in two different ways that 

n(n + 1) 
1 + 2 + 3 + + n = · · · 

2 

But now we’re going to prove a contradictory theorem! 

False Theorem. For all n ≥ 0, 

n(n + 1) 
2 + 3 + 4 + + n = · · · 

2 

Proof. We use induction. Let P (n) be the proposition that 2 + 3 + 4 + + n = · · · 
n(n + 1)/2. 
Base case: P (0) is true, since both sides of the equation are equal to zero. (Recall 
that a sum with no terms is zero.) 
Inductive step: Now we must show that P (n) implies P (n + 1) for all n ≥ 0. So 
suppose that P (n) is true; that is, 2 + 3 + 4 + + n = n(n + 1)/2. Then we can · · · 
reason as follows: 

2 + 3 + 4 + + n + (n + 1) = [2 + 3 + 4 + + n] + (n + 1) · · · · · · 
n(n + 1) 

= + (n + 1) 
2 

(n + 1)(n + 2) 
= 

2 

Above, we group some terms, use the assumption P (n), and then simplify. This 
shows that P (n) implies P (n + 1). By the principle of induction, P (n) is true for 
all n ∈ N. � 

Where exactly is the error in this proof? 

Homework Problems 

Problem 6.7. 

Claim 6.1.4. If a collection of positive integers (not necessarily distinct) has sum n ≥ 1, 
then the collection has product at most 3n/3 . 

For example, the collection 2, 2, 3, 4, 4, 7 has the sum: 

2 + 2 + 3 + 4 + 4 + 7 = 22 

On the other hand, the product is: 

2 2 3 4 4 7 = 1344· · · · · 
≤ 322/3 

≈ 3154.2 
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(a) Use strong induction to prove that n ≤ 3n/3 for every integer n ≥ 0. 

(b) Prove the claim using induction or strong induction. (You may find it easier to 
use induction on the number of positive integers in the collection rather than induction 
on the sum n.) 

Problem 6.8. 
For any binary string, α, let num (α) be the nonnegative integer it represents in 
binary notation. For example, num (10) = 2, and num (0101) = 5. 

An n+1-bit adder adds two n+1-bit binary numbers. More precisely, an n+1-bit 
adder takes two length n + 1 binary strings 

αn ::= an . . . a1a0, 

βn ::= bn . . . b1b0, 

and a binary digit, c0, as inputs, and produces a length n + 1 binary string 

σn ::= sn . . . s1s0, 

and a binary digit, cn+1, as outputs, and satisfies the specification: 

num (αn) + num (βn) + c0 = 2n+1 cn+1 + num (σn) . (6.7) 

There is a straighforward way to implement an n + 1-bit adder as a digital 
circuit: an n + 1-bit ripple-carry circuit has 1 + 2(n + 1) binary inputs 

an, . . . , a1, a0, bn, . . . , b1, b0, c0, 

and n + 2 binary outputs, 
cn+1, sn, . . . , s1, s0. 

As in Problem 3.5, the ripple-carry circuit is specified by the following formulas: 

si ::= ai XOR bi XOR ci (6.8) 
ci+1 ::= (ai AND bi) OR (ai AND ci) OR (bi AND ci), . (6.9) 

for 0 ≤ i ≤ n. 
(a) Verify that definitions (6.8) and (6.9) imply that 

an + bn + cn = 2cn+1 + sn. (6.10) 

for all n ∈ N. 

(b) Prove by induction on n that an n +1-bit ripple-carry circuit really is an n +1­
bit adder, that is, its outputs satisfy (6.7). 

Hint: You may assume that, by definition of binary representation of integers, 

num (αn+1) = an+12n+1 + num (αn) . (6.11) 
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Problem 6.9. 
The 6.042 mascot, Theory Hippotamus, made a startling discovery while playing 
with his prized collection of unit squares over the weekend. Here is what hap­
pened. 

First, Theory Hippotamus put his favorite unit square down on the floor as in 
Figure 6.1 (a). He noted that the length of the periphery of the resulting shape was 
4, an even number. Next, he put a second unit square down next to the first so 
that the two squares shared an edge as in Figure 6.1 (b). He noticed that the length 
of the periphery of the resulting shape was now 6, which is also an even number. 
(The periphery of each shape in the figure is indicated by a thicker line.) Theory 
Hippotamus continued to place squares so that each new square shared an edge 
with at least one previously-placed square and no squares overlapped. Eventually, 
he arrived at the shape in Figure 6.1 (c). He realized that the length of the periphery 
of this shape was 36, which is again an even number. 

Our plucky porcine pal is perplexed by this peculiar pattern. Use induction on 
the number of squares to prove that the length of the periphery is always even, no 
matter how many squares Theory Hippotamus places or how he arranges them. 

(a) (b) (c)

Figure 6.1: Some shapes that Theory Hippotamus created. 

6.2 Strong Induction 

A useful variant of induction is called strong induction. Strong Induction and Ordi­
nary Induction are used for exactly the same thing: proving that a predicate P (n) 
is true for all n ∈ N. 
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Principle of Strong Induction. Let P (n) be a predicate. If 

• P (0) is true, and 

• for all n ∈ N, P (0), P (1), . . . , P (n) together imply P (n + 1), 

then P (n) is true for all n ∈ N. 

The only change from the ordinary induction principle is that strong induction 
allows you to assume more stuff in the inductive step of your proof! In an ordinary 
induction argument, you assume that P (n) is true and try to prove that P (n + 1) 
is also true. In a strong induction argument, you may assume that P (0), P (1), . . . , 
and P (n) are all true when you go to prove P (n + 1). These extra assumptions can 
only make your job easier. 

6.2.1 Products of Primes 

As a first example, we’ll use strong induction to re-prove Theorem 2.4.1 which we 
previously proved using Well Ordering. 

Lemma 6.2.1. Every integer greater than 1 is a product of primes. 

Proof. We will prove Lemma 6.2.1 by strong induction, letting the induction hy­
pothesis, P (n), be 

n is a product of primes. 

So Lemma 6.2.1 will follow if we prove that P (n) holds for all n ≥ 2. 
Base Case: (n = 2) P (2) is true because 2 is prime, and so it is a length one 

product of primes by convention. 
Inductive step: Suppose that n ≥ 2 and that i is a product of primes for every 

integer i where 2 ≤ i < n + 1. We must show that P (n + 1) holds, namely, that 
n + 1 is also a product of primes. We argue by cases: 

If n + 1 is itself prime, then it is a length one product of primes by convention, 
so P (n + 1) holds in this case. 

Otherwise, n + 1 is not prime, which by definition means n + 1 = km for some 
integers k,m such that 2 ≤ k,m < n + 1. Now by strong induction hypothesis, we 
know that k is a product of primes. Likewise, m is a product of primes. it follows 
immediately that km = n is also a product of primes. Therefore, P (n + 1) holds in 
this case as well. 

So P (n + 1) holds in any case, which completes the proof by strong induction 
that P (n) holds for all nonnegative integers, n. 
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6.2.2 Making Change 

The country Inductia, whose unit of currency is the Strong, has coins worth 3Sg 
(3 Strongs) and 5Sg. Although the Inductians have some trouble making small 
change like 4Sg or 7Sg, it turns out that they can collect coins to make change for 
any number that is at least 8 Strongs. 

Strong induction makes this easy to prove for n +1 ≥ 11, because then (n+1)−
3 ≥ 8, so by strong induction the Inductians can make change for exactly (n+1)−3 
Strongs, and then they can add a 3Sg coin to get (n + 1)Sg. So the only thing to do 
is check that they can make change for all the amounts from 8 to 10Sg, which is not 
too hard to do. 

Here’s a detailed writeup using the official format: 

Proof. We prove by strong induction that the Inductians can make change for any 
amount of at least 8Sg. The induction hypothesis, P (n) will be: 

If n ≥ 8, then there is a collection of coins whose value is n Strongs. 

Notice that P (n) is an implication. When the hypothesis of an implication is 
false, we know the whole implication is true. In this situation, the implication is 
said to be vacuously true. So P (n) will be vacuously true whenever n < 8.3 

We now proceed with the induction proof: 
Base case: P (0) is vacuously true. 
Inductive step: We assume P (i) holds for all i ≤ n, and prove that P (n + 1) 

holds. We argue by cases: 
Case (n + 1 < 8): P (n + 1) is vacuously true in this case. 
Case (n + 1 = 8): P (8) holds because the Inductians can use one 3Sg coin and 

one 5Sg coins. 
Case (n + 1 = 9): Use three 3Sg coins. 
Case (n + 1 = 10): Use two 5Sg coins. 
Case (n + 1 ≥ 11): Then n ≥ (n + 1) − 3 ≥ 8, so by the strong induction 

hypothesis, the Inductians can make change for (n +1) − 3 Strong. Now by adding 
a 3Sg coin, they can make change for (n + 1)Sg. 

So in any case, P (n + 1) is true, and we conclude by strong induction that for 
all n ≥ 8, the Inductians can make change for n Strong. 

6.2.3 The Stacking Game 

Here is another exciting 6.042 game that’s surely about to sweep the nation! 
You begin with a stack of n boxes. Then you make a sequence of moves. In 

each move, you divide one stack of boxes into two nonempty stacks. The game 

3Another approach that avoids these vacuous cases is to define 

Q(n) ::= there is a collection of coins whose value is n + 8Sg, 

and prove that Q(n) holds for all n ≥ 0. 
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ends when you have n stacks, each containing a single box. You earn points for 
each move; in particular, if you divide one stack of height a + b into two stacks 
with heights a and b, then you score ab points for that move. Your overall score is 
the sum of the points that you earn for each move. What strategy should you use 
to maximize your total score? 

As an example, suppose that we begin with a stack of n = 10 boxes. Then the 
game might proceed as follows: 

Stack Heights Score 
10 
5 5 25 points 
5 3 2 6 
4 3 2 1 4 
2 3 2 1 2 4 
2 2 2 1 2 1 2 
1 2 2 1 2 1 1 1 
1 1 2 1 2 1 1 1 1 
1 1 1 1 2 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 

Total Score = 45 points 

On each line, the underlined stack is divided in the next step. Can you find a better 
strategy? 

Analyzing the Game 

Let’s use strong induction to analyze the unstacking game. We’ll prove that your 
score is determined entirely by the number of boxes —your strategy is irrelevant! 

Theorem 6.2.2. Every way of unstacking n blocks gives a score of n(n − 1)/2 points. 

There are a couple technical points to notice in the proof: 

•	 The template for a strong induction proof is exactly the same as for ordinary 
induction. 

•	 As with ordinary induction, we have some freedom to adjust indices. In this 
case, we prove P (1) in the base case and prove that P (1), . . . , P (n) imply 
P (n + 1) for all n ≥ 1 in the inductive step. 

Proof. The proof is by strong induction. Let P (n) be the proposition that every way 
of unstacking n blocks gives a score of n(n − 1)/2. 

Base case: If n = 1, then there is only one block. No moves are possible, and so 
the total score for the game is 1(1 − 1)/2 = 0. Therefore, P (1) is true. 

Inductive step: Now we must show that P (1), . . . , P (n) imply P (n + 1) for all 
n ≥ 1. So assume that P (1), . . . , P (n) are all true and that we have a stack of n + 1 
blocks. The first move must split this stack into substacks with positive sizes a and 
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b where a + b = n +1 and 0 < a, b ≤ n. Now the total score for the game is the sum 
of points for this first move plus points obtained by unstacking the two resulting 
substacks: 

total score = (score for 1st move) 
+ (score for unstacking a blocks) 
+ (score for unstacking b blocks) 

= ab + 
a(a − 1) 

+ 
b(b − 1) 

by P (a) and P (b)
2 2 

(a + b)2 − (a + b) (a + b)((a + b) − 1)
= = 

2 2 
(n + 1)n 

= 
2 

This shows that P (1), P (2), . . . , P (n) imply P (n + 1). 
Therefore, the claim is true by strong induction. � 

Despite the name, strong induction is technically no more powerful than ordi­
nary induction, though it makes some proofs easier to follow. But any theorem that 
can be proved with strong induction could also be proved with ordinary induction 
(using a slightly more complicated induction hypothesis). On the other hand, an­
nouncing that a proof uses ordinary rather than strong induction highlights the 
fact that P (n + 1) follows directly from P (n), which is generally good to know. 

6.2.4 Problems 

Class Problems 

Problem 6.10. 
A group of n ≥ 1 people can be divided into teams, each containing either 4 or 7 
people. What are all the possible values of n? Use induction to prove that your 
answer is correct. 

Problem 6.11. 
The following Lemma is true, but the proof given for it below is defective. Pin­
point exactly where the proof first makes an unjustified step and explain why it is 
unjustified. 

Lemma 6.2.3. For any prime p and positive integers n, x1, x2, . . . , xn, if p x1x2 . . . xn, 
then p | xi for some 1 ≤ i ≤ n. 

| 

False proof. Proof by strong induction on n. The induction hypothesis, P (n), is that 
Lemma holds for n. 

Base case n = 1: When n = 1, we have p | x1, therefore we can let i = 1 and 
conclude p | xi. 
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Induction step: Now assuming the claim holds for all k ≤ n, we must prove it 
for n + 1. 

So suppose p | x1x2 . . . xn+1. Let yn = xnxn+1, so x1x2 . . . xn+1 = x1x2 . . . xn−1yn. 
Since the righthand side of this equality is a product of n terms, we have by induc­
tion that p divides one of them. If p | xi for some i < n, then we have the desired 
i. Otherwise p | yn. But since yn is a product of the two terms xn, xn+1, we have 
by strong induction that p divides one of them. So in this case p | xi for i = n or 
i = n + 1. � 

Problem 6.12. 
Define the potential, p(S), of a stack of blocks, S, to be k(k − 1)/2 where k is the 
number of blocks in S. Define the potential, p(A), of a set of stacks, A, to be the 
sum of the potentials of the stacks in A. 

Generalize Theorem 6.2.2 about scores in the stacking game to show that for 
any set of stacks, A, if a sequence of moves starting with A leads to another set of 
stacks, B, then p(A) ≥ p(B), and the score for this sequence of moves is p(A)−p(B). 

Hint: Try induction on the number of moves to get from A to B. 

6.3 Induction versus Well Ordering 

The Induction Axiom looks nothing like the Well Ordering Principle, but these two 
proof methods are closely related. In fact, as the examples above suggest, we can 
take any Well Ordering proof and reformat it into an Induction proof. Conversely, 
it’s equally easy to take any Induction proof and reformat it into a Well Ordering 
proof. 

So what’s the difference? Well, sometimes induction proofs are clearer because 
they resemble recursive procedures that reduce handling an input of size n + 1 to 
handling one of size n. On the other hand, Well Ordering proofs sometimes seem 
more natural, and also come out slightly shorter. The choice of method is really a 
matter of style—but style does matter. 
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