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Chapter 5 

First-Order Logic 

5.1 Quantifiers 

There are a couple of assertions commonly made about a predicate: that it is some­
times true and that it is always true. For example, the predicate 

“x 2 ≥ 0” 

is always true when x is a real number. On the other hand, the predicate 

“5x 2 − 7 = 0” 

is only sometimes true; specifically, when x = ± 7/5. 
There are several ways to express the notions of “always true” and “sometimes 

true” in English. The table below gives some general formats on the left and spe­
cific examples using those formats on the right. You can expect to see such phrases 
hundreds of times in mathematical writing! 

Always True 

For all n, P (n) is true. For all x ∈ R, x2 ≥ 0. 
P (n) is true for every n. x2 ≥ 0 for every x ∈ R. 

Sometimes True 

There exists an n such that P (n) is true. There exists an x ∈ R such that 5x2 − 7 = 0.

P (n) is true for some n. 5x2 − 7 = 0 for some x ∈ R.

P (n) is true for at least one n. 5x2 − 7 = 0 for at least one x ∈ R.


All these sentences quantify how often the predicate is true. Specifically, an 
assertion that a predicate is always true is called a universal quantification, and an 
assertion that a predicate is sometimes true is an existential quantification. Some­
times the English sentences are unclear with respect to quantification: 
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“If you can solve any problem we come up with, then you get an A for the 
course.” 

The phrase “you can solve any problem we can come up with” could reasonably 
be interpreted as either a universal or existential quantification: 

“you can solve every problem we come up with,” 

or maybe 

“you can solve at least one problem we come up with.” 

In any case, notice that this quantified phrase appears inside a larger if-then state­
ment. This is quite normal; quantified statements are themselves propositions and 
can be combined with and, or, implies, etc., just like any other proposition. 

5.1.1 More Cryptic Notation 

There are symbols to represent universal and existential quantification, just as 
there are symbols for “and” (∧), “implies” (−→), and so forth. In particular, to 
say that a predicate, P , is true for all values of x in some set, D, one writes: 

∀x ∈ D. P (x) 

The symbol ∀ is read “for all”, so this whole expression is read “for all x in D, P (x) 
is true”. To say that a predicate P (x) is true for at least one value of x in D, one 
writes: 

∃x ∈ D. P (x) 

The backward-E, ∃, is read “there exists”. So this expression would be read, “There 
exists an x in D such that P (x) is true.” The symbols ∀ and ∃ are always followed 
by a variable —usually with an indication of the set the variable ranges over —and 
then a predicate, as in the two examples above. 

As an example, let Probs be the set of problems we come up with, Solves(x) be 
the predicate “You can solve problem x”, and G be the proposition, “You get an A 
for the course.” Then the two different interpretations of 

“If you can solve any problem we come up with, then you get an A for 
the course.” 

can be written as follows: 

(∀x ∈ Probs. Solves(x)) IMPLIES G, 

or maybe 
(∃x ∈ Probs. Solves(x)) IMPLIES G. 
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5.1.2 Mixing Quantifiers 

Many mathematical statements involve several quantifiers. For example, Gold­
bach’s Conjecture states: 

“Every even integer greater than 2 is the sum of two primes.” 

Let’s write this more verbosely to make the use of quantification clearer: 

For every even integer n greater than 2, there exist primes p and q such 
that n = p + q. 

Let Evens be the set of even integers greater than 2, and let Primes be the set of 
primes. Then we can write Goldbach’s Conjecture in logic notation as follows: 

∀n ∈ Evens ∃p ∈ Primes ∃q ∈ Primes. n = p + q. � �� � � �� � 
for every even there exist primes 
integer n > 2 p and q such that 

5.1.3 Order of Quantifiers 

Swapping the order of different kinds of quantifiers (existential or universal) usu­
ally changes the meaning of a proposition. For example, let’s return to one of our 
initial, confusing statements: 

“Every American has a dream.” 

This sentence is ambiguous because the order of quantifiers is unclear. Let A be 
the set of Americans, let D be the set of dreams, and define the predicate H(a, d) 
to be “American a has dream d.”. Now the sentence could mean there is a single 
dream that every American shares: 

∃ d ∈ D ∀a ∈ A. H(a, d) 

For example, it might be that every American shares the dream of owning their 
own home. 

Or it could mean that every American has a personal dream: 

∀a ∈ A ∃ d ∈ D. H(a, d) 

For example, some Americans may dream of a peaceful retirement, while others 
dream of continuing practicing their profession as long as they live, and still others 
may dream of being so rich they needn’t think at all about work. 

Swapping quantifiers in Goldbach’s Conjecture creates a patently false state­
ment that every even number ≥ 2 is the sum of the same two primes: 

∃ p ∈ Primes ∃ q ∈ Primes ∀n ∈ Evens. n = p + q. � �� � � �� � 
there exist primes for every even 
p and q such that integer n > 2 
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Variables Over One Domain 

When all the variables in a formula are understood to take values from the same 
nonempty set, D, it’s conventional to omit mention of D. For example, instead of 
∀x ∈ D ∃y ∈ D. Q(x, y) we’d write ∀x∃y. Q(x, y). The unnamed nonempty set 
that x and y range over is called the domain of discourse, or just plain domain, of the 
formula. 

It’s easy to arrange for all the variables to range over one domain. For exam­
ple, Goldbach’s Conjecture could be expressed with all variables ranging over the 
domain N as 

∀n. n ∈ Evens IMPLIES (∃ p∃ q. p ∈ Primes ∧ q ∈ Primes ∧ n = p + q). 

5.1.4 Negating Quantifiers 

There is a simple relationship between the two kinds of quantifiers. The following 
two sentences mean the same thing: 

It is not the case that everyone likes to snowboard. 

There exists someone who does not like to snowboard. 

In terms of logic notation, this follows from a general property of predicate formu­
las: 

NOT ∀x. P (x) is equivalent to ∃x. NOT P (x). 

Similarly, these sentences mean the same thing: 

There does not exist anyone who likes skiing over magma. 

Everyone dislikes skiing over magma. 

We can express the equivalence in logic notation this way: 

(NOT ∃x. P (x)) IFF ∀x. NOT P (x). (5.1) 

The general principle is that moving a “not” across a quantifier changes the kind of 
quantifier. 

5.1.5 Validity 

A propositional formula is called valid when it evaluates to T no matter what truth 
values are assigned to the individual propositional variables. For example, the 
propositional version of the Distributive Law is that P AND (Q OR R) is equivalent 
to (P AND Q) OR (P AND R). This is the same as saying that 

[P AND (Q OR R)] IFF [(P AND Q) OR (P AND R)] 

is valid. 
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The same idea extends to predicate formulas, but to be valid, a formula now 
must evaluate to true no matter what values its variables may take over any un­
specified domain, and no matter what interpretation a predicate variable may be 
given. For example, we already observed that the rule for negating a quantifier is 
captured by the valid assertion (5.1). 

Another useful example of a valid assertion is 

∃x∀y. P (x, y) IMPLIES ∀y∃x. P (x, y). (5.2) 

Here’s an explanation why this is valid: 

Let D be the domain for the variables and P0 be some binary predicate1 

on D. We need to show that if 

∃x ∈ D ∀y ∈ D. P0(x, y) 

holds under this interpretation, then so does 

(5.3) 

∀y ∈ D ∃x ∈ D. P0(x, y). (5.4) 

So suppose (5.3) is true. Then by definition of ∃, this means that some 
element d0 ∈ D has the property that 

∀y ∈ D.P0(d0, y). 

By definition of ∀, this means that 

P0(d0, d) 

is true for all d ∈ D. So given any d ∈ D, there is an element in D, 
namely, d0, such that P0(d0, d) is true. But that’s exactly what (5.4) 
means, so we’ve proved that (5.4) holds under this interpretation, as 
required. 

We hope this is helpful as an explanation, but we don’t really want to call it 
a “proof.” The problem is that with something as basic as (5.2), it’s hard to see 
what more elementary axioms are ok to use in proving it. What the explanation 
above did was translate the logical formula (5.2) into English and then appeal to 
the meaning, in English, of “for all” and “there exists” as justification. So this 
wasn’t a proof, just an explanation that once you understand what (5.2) means, it 
becomes obvious. 

In contrast to (5.2), the formula 

∀y∃x. P (x, y) IMPLIES ∃x∀y. P (x, y). (5.5) 

is not valid. We can prove this just by describing an interpretation where the hy­
pothesis, ∀y∃x. P (x, y), is true but the conclusion, ∃x∀y. P (x, y), is not true. For 

1That is, a predicate that depends on two variables. 



78 CHAPTER 5. FIRST-ORDER LOGIC 

example, let the domain be the integers and P (x, y) mean x > y. Then the hy­
pothesis would be true because, given a value, n, for y we could choose the value 
of x to be n + 1, for example. But under this interpretation the conclusion asserts 
that there is an integer that is bigger than all integers, which is certainly false. An 
interpretation like this which falsifies an assertion is called a counter model to the 
assertion. 

5.1.6 Problems 

Class Problems 

Problem 5.1. 
A media tycoon has an idea for an all-news television network called LNN: The 
Logic News Network. Each segment will begin with a definition of the domain of 
discourse and a few predicates. The day’s happenings can then be communicated 
concisely in logic notation. For example, a broadcast might begin as follows: 

“THIS IS LNN. The domain of discourse is {Albert, Ben, Claire, David, Emily}. 
Let D(x) be a predicate that is true if x is deceitful. Let L(x, y) be a pred­
icate that is true if x likes y. Let G(x, y) be a predicate that is true if x 
gave gifts to y.” 

Translate the following broadcasted logic notation into (English) statements. 
(a) 

( (D(Ben) ∨ D(David))) −→ (L(Albert, Ben) ∧ L(Ben, Albert))¬

(b) 

∀x (x = Claire ∧ ¬L(x, Emily)) ∨ (x =� Claire ∧ L(x, Emily)) ∧ 

∀x (x = David ∧ L(x, Claire)) ∨ (x =� David ∧ ¬L(x, Claire)) 

(c) 
¬D(Claire) −→ (G(Albert, Ben) ∧ ∃ xG(Ben, x)) 

(d) 
∀x∃y∃z (y =� z) ∧ L(x, y) ∧ ¬L(x, z) 

(e) How could you express “Everyone except for Claire likes Emily” using just 
propositional connectives without using any quantifiers (∀, ∃)? Can you generalize 
to explain how any logical formula over this domain of discourse can be expressed 
without quantifiers? How big would the formula in the previous part be if it was 
expressed this way? 
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Problem 5.2. 
The goal of this problem is to translate some assertions about binary strings into 
logic notation. The domain of discourse is the set of all finite-length binary strings: 
λ, 0, 1, 00, 01, 10, 11, 000, 001, . . . . (Here λ denotes the empty string.) In your 
translations, you may use all the ordinary logic symbols (including =), variables, 
and the binary symbols 0, 1 denoting 0, 1. 

A string like 01x0y of binary symbols and variables denotes the concatenation 
of the symbols and the binary strings represented by the variables. For example, 
if the value of x is 011 and the value of y is 1111, then the value of 01x0y is the 
binary string 0101101111. 

Here are some examples of formulas and their English translations. Names for 
these predicates are listed in the third column so that you can reuse them in your 
solutions (as we do in the definition of the predicate NO-1S below). 

Meaning Formula Name 
x is a prefix of y ∃z (xz = y) PREFIX(x, y) 
x is a substring of y ∃u∃v (uxv = y) SUBSTRING(x, y) 
x is empty or a string of 0’s NOT(SUBSTRING(1, x)) NO-1S(x) 

(a) x consists of three copies of some string. 

(b) x is an even-length string of 0’s. 

(c) x does not contain both a 0 and a 1. 

(d) x is the binary representation of 2k + 1 for some integer k ≥ 0. 

(e) An elegant, slightly trickier way to define NO-1S(x) is: 

PREFIX(x, 0x). (*) 

Explain why (*) is true only when x is a string of 0’s. 

Problem 5.3. 
For each of the logical formulas, indicate whether or not it is true when the do­
main of discourse is N, (the nonnegative integers 0, 1, 2, . . . ), Z (the integers), Q 
(the rationals), R (the real numbers), and C (the complex numbers). Add a brief 
explanation to the few cases that merit one. 

∃x (x2 = 2) 
∀x ∃y (x2 = y) 
∀y ∃x (x2 = y) 

= 0 (xy = 1)∀x � ∃y 
∃x ∃y (x + 2y = 2) ∧ (2x + 4y = 5) 
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Problem 5.4. 
Show that 

(∀x∃y. P (x, y)) −→ ∀z. P (z, z) 
is not valid by describing a counter-model. 

Homework Problems 

Problem 5.5. 
Express each of the following predicates and propositions in formal logic notation. 
The domain of discourse is the nonnegative integers, N. Moreover, in addition to 
the propositional operators, variables and quantifiers, you may define predicates 
using addition, multiplication, and equality symbols, but no constants (like 0, 1,. . . ) 
and no exponentiation (like xy). For example, the proposition “n is an even number” 
could be written 

∃m. (m + m = n). 
(a) n is the sum of two fourth-powers (a fourth-power is k4 for some integer k). 

Since the constant 0 is not allowed to appear explicitly, the predicate “x = 0” 
can’t be written directly, but note that it could be expressed in a simple way as: 

x + x = x. 

Then the predicate x > y could be expressed 

∃w. (y + w = x) ∧ (w = 0)� . 

Note that we’ve used “w =� 0” in this formula, even though it’s technically not 
allowed. But since “w = 0� ” is equivalent to the allowed formula “¬(w + w = w),” 
we can use “w = 0� ” with the understanding that it abbreviates the real thing. And 
now that we’ve shown how to express “x > y,” it’s ok to use it too. 
(b) x = 1. 

(c) m is a divisor of n (notation: m | n) 

(d) n is a prime number (hint: use the predicates from the previous parts) 

(e) n is a power of 3. 

Problem 5.6. 
Translate the following sentence into a predicate formula: 

There is a student who has emailed exactly two other people in the 
class, besides possibly herself. 

The domain of discourse should be the set of students in the class; in addition, 
the only predicates that you may use are 

• equality, and 

• E(x, y), meaning that “x has sent e-mail to y.” 
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5.2 The Logic of Sets 

5.2.1 Russell’s Paradox 

Reasoning naively about sets turns out to be risky. In fact, one of the earliest at­
tempts to come up with precise axioms for sets by a late nineteenth century logican 
named Gotlob Frege was shot down by a three line argument known as Russell’s 
Paradox:2 This was an astonishing blow to efforts to provide an axiomatic founda­
tion for mathematics. 

Let S be a variable ranging over all sets, and define 

W ::= {S | S �∈ S} . 

So by definition, 
S ∈ W iff S �∈ S, 

for every set S. In particular, we can let S be W , and obtain the contra­
dictory result that 

W ∈ W iff W �∈ W. 

A way out of the paradox was clear to Russell and others at the time: it’s un­
justified to assume that W is a set. So the step in the proof where we let S be W has 
no justification, because S ranges over sets, and W may not be a set. In fact, the 
paradox implies that W had better not be a set! 

But denying that W is a set means we must reject the very natural axiom that 
every mathematically well-defined collection of elements is actually a set. So the 
problem faced by Frege, Russell and their colleagues was how to specify which 
well-defined collections are sets. Russell and his fellow Cambridge University col­
league Whitehead immediately went to work on this problem. They spent a dozen 
years developing a huge new axiom system in an even huger monograph called 
Principia Mathematica. 

5.2.2 The ZFC Axioms for Sets 

It’s generally agreed that, using some simple logical deduction rules, essentially 
all of mathematics can be derived from some axioms about sets called the Axioms 
of Zermelo-Frankel Set Theory with Choice (ZFC). 

We’re not going to be working with these axioms in this course, but we thought 

2Bertrand Russell was a mathematician/logician at Cambridge University at the turn of the Twen­
tieth Century. He reported that when he felt too old to do mathematics, he began to study and write 
about philosophy, and when he was no longer smart enough to do philosophy, he began writing about 
politics. He was jailed as a conscientious objector during World War I. For his extensive philosophical 
and political writing, he won a Nobel Prize for Literature. 
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you might like to see them –and while you’re at it, get some practice reading quan­
tified formulas: 

Extensionality. Two sets are equal if they have the same members. In formal log­
ical notation, this would be stated as: 

(∀z. (z ∈ x IFF z ∈ y)) IMPLIES x = y. 

Pairing. For any two sets x and y, there is a set, {x, y}, with x and y as its only 
elements: 

∀x, y. ∃u. ∀z. [z ∈ u IFF (z = x OR z = y)] 

Union. The union, u, of a collection, z, of sets is also a set: 

∀z. ∃u∀x. (∃y. x ∈ y AND y ∈ z) IFF x ∈ u. 

Infinity. There is an infinite set. Specifically, there is a nonempty set, x, such that 
for any set y ∈ x, the set {y} is also a member of x. 

Power Set. All the subsets of a set form another set: 

∀x. ∃p. ∀u. u ⊆ x IFF u ∈ p. 

Replacement. Suppose a formula, φ, of set theory defines the graph of a function, 
that is, 

∀x, y, z. [φ(x, y) AND φ(x, z)] IMPLIES y = z. 

Then the image of any set, s, under that function is also a set, t. Namely, 

∀s ∃t ∀y. [∃x. φ(x, y) IFF y ∈ t]. 

Foundation. There cannot be an infinite sequence 

· · · ∈ xn ∈ · · · ∈ x1 ∈ x0 

of sets each of which is a member of the previous one. This is equivalent 
to saying every nonempty set has a “member-minimal” element. Namely, 
define 

member-minimal(m, x) ::= [m ∈ x AND ∀y ∈ x. y /∈ m]. 

Then the Foundation axiom is 

∀x. x =� ∅ IMPLIES ∃m. member-minimal(m, x). 

Choice. Given a set, s, whose members are nonempty sets no two of which have 
any element in common, then there is a set, c, consisting of exactly one ele­
ment from each set in s. 
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5.2.3 Avoiding Russell’s Paradox 

These modern ZFC axioms for set theory are much simpler than the system Russell 
and Whitehead first came up with to avoid paradox. In fact, the ZFC axioms are 
as simple and intuitive as Frege’s original axioms, with one technical addition: the 
Foundation axiom. Foundation captures the intuitive idea that sets must be built 
up from “simpler” sets in certain standard ways. And in particular, Foundation 
implies that no set is ever a member of itself. So the modern resolution of Russell’s 
paradox goes as follows: since S �∈ S for all sets S, it follows that W , defined 
above, contains every set. This means W can’t be a set —or it would be a member 
of itself. 

5.2.4 Power sets are strictly bigger 

It turns out that the ideas behind Russell’s Paradox, which caused so much trouble 
for the early efforts to formulate Set Theory, lead to a correct and astonishing fact 
about infinite sets: they are not all the same size. 

In particular, 

Theorem 5.2.1. For any set, A, the power set, P(A), is strictly bigger than A. 

Proof. First of all, P(A) is as big as A: for example, the partial function f : P(A) →
A, where f({a}) ::= a for a ∈ A and f is only defined on one-element sets, is a 
surjection. 

To show that P(A) is strictly bigger than A, we have to show that if g is a func­
tion from A to P(A), then g is not a surjection. So, mimicking Russell’s Paradox, 
define 

Ag ::= {a ∈ A | a /∈ g(a)} . 
Now Ag is a well-defined subset of A, which means it is a member of P(A). But 
Ag can’t be in the range of g, because if it were, we would have 

Ag = g(a0) 

for some a0 ∈ A, so by definition of Ag , 

a ∈ g(a0) iff a ∈ Ag iff a /∈ g(a) 

for all a ∈ A. Now letting a = a0 yields the contradiction 

a0 ∈ g(a0) iff a0 ∈/ g(a0). 

So g is not a surjection, because there is an element in the power set of A, namely 
the set Ag , that is not in the range of g. � 

Larger Infinities 

There are lots of different sizes of infinite sets. For example, starting with the infi­
nite set, N, of nonnegative integers, we can build the infinite sequence of sets 

N, P(N), P(P(N)), P(P(P(N))), . . . . 
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By Theorem 5.2.1, each of these sets is strictly bigger than all the preceding ones. 
But that’s not all: the union of all the sets in the sequence is strictly bigger than each 
set in the sequence (see Problem 5.7). In this way you can keep going, building still 
bigger infinities. 

So there is an endless variety of different size infinities. 

5.2.5 Does All This Really Work? 

So this is where mainstream mathematics stands today: there is a handful of ZFC 
axioms from which virtually everything else in mathematics can be logically de­
rived. This sounds like a rosy situation, but there are several dark clouds, suggest­
ing that the essence of truth in mathematics is not completely resolved. 

•	 The ZFC axioms weren’t etched in stone by God. Instead, they were mostly 
made up by some guy named Zermelo. Probably some days he forgot his 
house keys. 

So maybe Zermelo, just like Frege, didn’t get his axioms right and will be 
shot down by some successor to Russell who will use his axioms to prove 
a proposition P and its negation NOT P . Then math would be broken. This 
sounds crazy, but after all, it has happened before. 

In fact, while there is broad agreement that the ZFC axioms are capable of 
proving all of standard mathematics, the axioms have some further conse­
quences that sound paradoxical. For example, the Banach-Tarski Theorem 
says that, as a consequence of the Axiom of Choice, a solid ball can be di­
vided into six pieces and then the pieces can be rigidly rearranged to give 
two solid balls, each the same size as the original! 

•	 Georg Cantor was a contemporary of Frege and Russell who first developed 
the theory of infinite sizes (because he thought he needed it in his study of 
Fourier series). Cantor raised the question whether there is a set whose size 
is strictly between the “smallest3” infinite set, N, and P(N); he guessed not: 

Cantor’s Continuum Hypothesis: There is no set, A, such that P(N) is strictly 
bigger than A and A is strictly bigger than N. 

The Continuum Hypothesis remains an open problem a century later. Its 
difficulty arises from one of the deepest results in modern Set Theory — 
discovered in part by Gödel in the 1930’s and Paul Cohen in the 1960’s — 
namely, the ZFC axioms are not sufficient to settle the Continuum Hypoth­
esis: there are two collections of sets, each obeying the laws of ZFC, and in 
one collection the Continuum Hypothesis is true, and in the other it is false. 
So settling the Continuum Hypothesis requires a new understanding of what 
Sets should be to arrive at persuasive new axioms that extend ZFC and are 
strong enough to determine the truth of the Continuum Hypothesis one way 
or the other. 

3See Problem 4.3 
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•	 But even if we use more or different axioms about sets, there are some un­
avoidable problems. In the 1930’s, Gödel proved that, assuming that an ax­
iom system like ZFC is consistent —meaning you can’t prove both P and 
NOT P for any proposition, P —then the very proposition that the system is 
consistent (which is not too hard to express as a logical formula) cannot be 
proved in the system. In other words, no consistent system is strong enough 
to verify itself. 

5.2.6 Large Infinities in Computer Science 

If the romance of different size infinities and continuum hypotheses doesn’t appeal 
to you, not knowing about them is not going to lower your professional abilities 
as a computer scientist. These abstract issues about infinite sets rarely come up 
in mainstream mathematics, and they don’t come up at all in computer science, 
where the focus is generally on “countable,” and often just finite, sets. In practice, 
only logicians and set theorists have to worry about collections that are too big to 
be sets. In fact, at the end of the 19th century, the general mathematical community 
doubted the relevance of what they called “Cantor’s paradise” of unfamiliar sets 
of arbitrary infinite size. 

But the proof that power sets are bigger gives the simplest form of what is 
known as a “diagonal argument.” Diagonal arguments are used to prove many 
fundamental results about the limitations of computation, such as the undecid­
ability of the Halting Problem for programs (see Problem 5.8) and the inherent, 
unavoidable, inefficiency (exponential time or worse) of procedures for other com­
putational problems. So computer scientists do need to study diagonal arguments 
in order to understand the logical limits of computation. 

5.2.7 Problems 

Class Problems 

Problem 5.7. 
There are lots of different sizes of infinite sets. For example, starting with the infi­
nite set, N, of nonnegative integers, we can build the infinite sequence of sets 

N, P(N), P(P(N)), P(P(P(N))), . . . . 

By Theorem 5.2.1 from the Notes, each of these sets is strictly bigger4 than all the 
preceding ones. But that’s not all: if we let U be the union of the sequence of sets 
above, then U is strictly bigger than every set in the sequence! Prove this: 

Lemma. Let Pn(N) be the nth set in the sequence, and 



∞
U ::= Pn(N). 

n=0 

4Reminder: set A is strictly bigger than set B just means that A surj B, but NOT(B surj A). 
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Then 

1.	 U surj Pn(N) for every n ∈ N, but 

2. there is no n ∈ N for which Pn(N) surj U . 

Now of course, we could take U, P(U), P(P(U)), . . . and can keep on indefi­
nitely building still bigger infinities. 

Problem 5.8. 
Let’s refer to a programming procedure (written in your favorite programming 
language —C++, or Java, or Python, . . . ) as a string procedure when it is applicable 
to data of type string and only returns values of type boolean. When a string 
procedure, P , applied to a string, s, returns True, we’ll say that P recognizes s. 
If R is the set of strings that P recognizes, we’ll call P a recognizer for R. 
(a) Describe how a recognizer would work for the set of strings containing only 

lower case Roman letter —a,b,...,z —such that each letter occurs twice in a 
row. For example, aaccaabbzz, is such a string, but abb, 00bb, AAbb, and a are 
not. (Even better, actually write a recognizer procedure in your favorite program­
ming language). 

A set of strings is called recognizable if there is a recognizer procedure for it. 
When you actually program a procedure, you have to type the program text 

into a computer system. This means that every procedure is described by some 
string of typed characters. If a string, s, is actually the typed description of 
some string procedure, let’s refer to that procedure as Ps. You can think of Ps as 
the result of compiling s.5 

In fact, it will be helpful to associate every string, s, with a procedure, Ps; we 
can do this by defining Ps to be some fixed string procedure —it doesn’t matter 
which one —whenever s is not the typed description of an actual procedure that 
can be applied to string s. The result of this is that we have now defined a total 
function, f , mapping every string, s, to the set, f(s), of strings recognized by 
Ps. That is we have a total function, 

f : string → P(string).	 (5.6) 

(b)	 Explain why the actual range of f is the set of all recognizable sets of strings. 
This is exactly the set up we need to apply the reasoning behind Russell’s Para­

dox to define a set that is not in the range of f , that is, a set of strings, N , that is not 
recognizable. 

5The string, s, and the procedure, Ps, have to be distinguished to avoid a type error: you can’t apply 
a string to string. For example, let s be the string that you wrote as your program to answer part (a). 
Applying s to a string argument, say oorrmm, should throw a type exception; what you need to do is 
apply the procedure Ps to oorrmm. This should result in a returned value True, since oorrmm consists 
of three pairs of lowercase roman letters 
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(c) Let 

N ::= {s ∈ string | s /∈ f(s)} . 

Prove that N is not recognizable. 

Hint: Similar to Russell’s paradox or the proof of Theorem 5.2.1. 

(d) Discuss what the conclusion of part (c) implies about the possibility of writing 
“program analyzers” that take programs as inputs and analyze their behavior. 

Problem 5.9. 
Though it was a serious challenge for set theorists to overcome Russells’ Paradox, 
the idea behind the paradox led to some important (and correct :-) ) results in 
Logic and Computer Science. 

To show how the idea applies, let’s recall the formulas from Problem 5.2 that 
made assertions about binary strings. For example, one of the formulas in that 
problem was 

NOT[∃y ∃z.s = y1z] (all-0s) 

This formula defines a property of a binary string, s, namely that s has no occur­
rence of a 1. In other words, s is a string of (zero or more) 0’s. So we can say that 
this formula describes the set of strings of 0’s. 

More generally, when G is any formula that defines a string property, let ok-strings(G) 
be the set of all the strings that have this property. A set of binary strings that 
equals ok-strings(G) for some G is called a describable set of strings. So, for exam­
ple, the set of all strings of 0’s is describable because it equals ok-strings(all-0s). 

Now let’s shift gears for a moment and think about the fact that formula all-0s 
appears above. This happens because instructions for formatting the formula were 
generated by a computer text processor (in 6.042, we use the LATEX text processing 
system), and then an image suitable for printing or display was constructed ac­
cording to these instructions. Since everybody knows that data is stored in com­
puter memory as binary strings, this means there must have been some binary 
string in computer memory —call it tall-0s —that enabled a computer to display 
formula all-0s once tall-0s was retrieved from memory. 

In fact, it’s not hard to find ways to represent any formula, G, by a correspond­
ing binary word, tG, that would allow a computer to reconstruct G from tG. We 
needn’t be concerned with how this reconstruction process works; all that matters 
for our purposes is that every formula, G, has a representation as binary string, tG. 

Now let 

V ::= {tG | G defines a property of strings and tG ∈/ ok-strings(G)} . 

Use reasoning similar to Russell’s paradox to show that V is not describable. 
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Homework Problems 

Problem 5.10. 
Let [N → {1, 2, 3}] be the set of all sequences containing only the numbers 1, 2, and 
3, for example, 

(1, 1, 1, 1...), 
(2, 2, 2, 2...), 
(3, 2, 1, 3...). 

For any sequence, s, let s[m] be its mth element. 
Prove that [N → {1, 2, 3}] is uncountable. 
Hint: Suppose there was a list 

L = sequence0, sequence1, sequence2, . . . 

of sequences in [N → {1, 2, 3}] and show that there is a “diagonal” sequence diag ∈
[N → {1, 2, 3}] that does not appear in the list. Namely, 

diag ::= r(sequence0[0]), r(sequence1[1]), r(sequence2[2]), . . . , 

where r : {1, 2, 3} → {1, 2, 3} is some function such that r(i) =� i for i = 1, 2, 3. 

Problem 5.11. 
For any sets, A, and B, let [A B] be the set of total functions from A to B. Prove →
that if A is not empty and B has more than one element, then NOT(A surj [A B]).→

Hint: Suppose there is a function, σ, that maps each element a ∈ A to a function 
σa : A B. Pick any two elements of B; call them 0 and 1. Then define → 

0 if σa(a) = 1,
diag(a) ::= 

1 otherwise. 
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5.3 Glossary of Symbols 

symbol	 meaning 
::= is defined to be 
∧ and 
∨ or 
−→ implies 

not¬ 
P not P¬

P	 not P 
iff ←→ 
equivalent←→ 

⊕ xor 
∃ exists 

for all ∀ 
is a member of ∈ 
is a subset of ⊆ 

⊂ is a proper subset of 
∪ set union 
∩ set intersection 
A complement of a set, A 
P(A) powerset of a set, A 
∅ the empty set, {} 
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