
Chapter 3 

Propositional Formulas 

It is amazing that people manage to cope with all the ambiguities in the English 
language. Here are some sentences that illustrate the issue: 

1. “You may have cake, or you may have ice cream.” 

2. “If pigs can fly, then you can understand the Chebyshev bound.” 

3. “If you can solve any problem we come up with, then you get an A for the 
course.” 

4. “Every American has a dream.” 

What precisely do these sentences mean? Can you have both cake and ice cream 
or must you choose just one dessert? If the second sentence is true, then is the 
Chebyshev bound incomprehensible? If you can solve some problems we come 
up with but not all, then do you get an A for the course? And can you still get an A 
even if you can’t solve any of the problems? Does the last sentence imply that all 
Americans have the same dream or might some of them have different dreams? 

Some uncertainty is tolerable in normal conversation. But when we need to for­
mulate ideas precisely —as in mathematics and programming —the ambiguities 
inherent in everyday language can be a real problem. We can’t hope to make an 
exact argument if we’re not sure exactly what the statements mean. So before we 
start into mathematics, we need to investigate the problem of how to talk about 
mathematics. 

To get around the ambiguity of English, mathematicians have devised a spe­
cial mini-language for talking about logical relationships. This language mostly 
uses ordinary English words and phrases such as “or”, “implies”, and “for all”. 
But mathematicians endow these words with definitions more precise than those 
found in an ordinary dictionary. Without knowing these definitions, you might 
sometimes get the gist of statements in this language, but you would regularly get 
misled about what they really meant. 
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Surprisingly, in the midst of learning the language of logic, we’ll come across 
the most important open problem in computer science —a problem whose solution 
could change the world. 

3.1 Propositions from Propositions 

In English, we can modify, combine, and relate propositions with words such as 
“not”, “and”, “or”, “implies”, and “if-then”. For example, we can combine three 
propositions into one like this: 

If all humans are mortal and all Greeks are human, then all Greeks are mortal. 

For the next while, we won’t be much concerned with the internals of propo­
sitions —whether they involve mathematics or Greek mortality —but rather with 
how propositions are combined and related. So we’ll frequently use variables such 
as P and Q in place of specific propositions such as “All humans are mortal” and 
“2 + 3 = 5”. The understanding is that these variables, like propositions, can take 
on only the values T (true) and F (false). Such true/false variables are sometimes 
called Boolean variables after their inventor, George —you guessed it —Boole. 

3.1.1 “Not”, “And”, and “Or” 

We can precisely define these special words using truth tables. For example, if 
P denotes an arbitrary proposition, then the truth of the proposition “NOT P ” is 
defined by the following truth table: 

P NOT P 
T F 
F T 

The first row of the table indicates that when proposition P is true, the proposition 
“NOT P ” is false. The second line indicates that when P is false, “NOT P ” is true. 
This is probably what you would expect. 

In general, a truth table indicates the true/false value of a proposition for each 
possible setting of the variables. For example, the truth table for the proposition 
“P AND Q” has four lines, since the two variables can be set in four different ways: 

P Q 
T T T 
T F F 
F T F 
F F F 

P AND Q 

According to this table, the proposition “P AND Q” is true only when P and Q are 
both true. This is probably the way you think about the word “and.” 
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There is a subtlety in the truth table for “P OR Q”: 

P Q 
T T T 
T F T 
F T T 
F F F 

P OR Q 

The third row of this table says that “P OR Q” is true when even if both P and Q 
are true. This isn’t always the intended meaning of “or” in everyday speech, but 
this is the standard definition in mathematical writing. So if a mathematician says, 
“You may have cake, or you may have ice cream,” he means that you could have 
both. 

If you want to exclude the possibility of having both having and eating, you 
should use “exclusive-or” (XOR): 

P Q 
T T F 
T F T 
F T T 
F F F 

P XOR Q 

3.1.2 “Implies” 

The least intuitive connecting word is “implies.” Here is its truth table, with the 
lines labeled so we can refer to them later. 

P Q 
T T 
T F 
F T 
F F 

P IMPLIES Q 
T (tt) 
F (tf) 
T (ft) 
T (ff) 

Let’s experiment with this definition. For example, is the following proposition 
true or false? 

“If Goldbach’s Conjecture is true, then x2 ≥ 0 for every real number x.” 

Now, we told you before that no one knows whether Goldbach’s Conjecture is true 
or false. But that doesn’t prevent you from answering the question! This propo­
sition has the form P −→ Q where the hypothesis, P , is “Goldbach’s Conjecture is 
true” and the conclusion, Q, is “x2 ≥ 0 for every real number x”. Since the conclu­
sion is definitely true, we’re on either line (tt) or line (ft) of the truth table. Either 
way, the proposition as a whole is true! 

One of our original examples demonstrates an even stranger side of implica­
tions. 

“If pigs fly, then you can understand the Chebyshev bound.” 
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Don’t take this as an insult; we just need to figure out whether this proposition is 
true or false. Curiously, the answer has nothing to do with whether or not you can 
understand the Chebyshev bound. Pigs do not fly, so we’re on either line (ft) or 
line (ff) of the truth table. In both cases, the proposition is true! 

In contrast, here’s an example of a false implication: 

“If the moon shines white, then the moon is made of white cheddar.” 

Yes, the moon shines white. But, no, the moon is not made of white cheddar cheese. 
So we’re on line (tf) of the truth table, and the proposition is false. 

The truth table for implications can be summarized in words as follows: 

An implication is true exactly when the if-part is false or the then-part is true. 

This sentence is worth remembering; a large fraction of all mathematical state­
ments are of the if-then form! 

3.1.3 “If and Only If” 

Mathematicians commonly join propositions in one additional way that doesn’t 
arise in ordinary speech. The proposition “P if and only if Q” asserts that P and Q 
are logically equivalent; that is, either both are true or both are false. 

P Q 
T T T 
T F F 
F T F 
F F T 

P IFF Q 

The following if-and-only-if statement is true for every real number x: 

x2 iff x− 4 ≥ 0 | | ≥ 2 

For some values of x, both inequalities are true. For other values of x, neither in­
equality is true . In every case, however, the proposition as a whole is true. 

3.1.4 Problems 

Class Problems 

Problem 3.1. 
When the mathematician says to his student, “If a function is not continuous, then 
it is not differentiable,” then letting D stand for “differentiable” and C for contin­
uous, the only proper translation of the mathematician’s statement would be 

NOT(C) IMPLIES NOT(D), 

or equivalently, 
D IMPLIES C. 
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But when a mother says to her son, “If you don’t do your homework, then 
you can’t watch TV,” then letting T stand for “watch TV” and H for “do your 
homework,” a reasonable translation of the mother’s statement would be 

NOT(H) IFF NOT(T ), 

or equivalently, 
H IFF T. 

Explain why it is reasonable to translate these two IF-THEN statements in dif­
ferent ways into propositional formulas. 

Problem 3.2. 
Prove by truth table that OR distributes over AND: 

[P OR (Q AND R)] is equivalent to [(P OR Q) AND (P OR R)] (3.1) 

Homework Problems 

Problem 3.3. 
Describe a simple recursive procedure which, given a positive integer argument, 
n, produces a truth table whose rows are all the assignments of truth values to n 
propositional variables. For example, for n = 2, the table might look like: 

T T 
T F 
F T 
F F 

Your description can be in English, or a simple program in some familiar lan­
guage (say Scheme or Java), but if you do write a program, be sure to include some 
sample output. 

3.2 Propositional Logic in Computer Programs 

Propositions and logical connectives arise all the time in computer programs. For 
example, consider the following snippet, which could be either C, C++, or Java: 

if ( x > 0 || (x <= 0 && y > 100) ) 
. . . 

(further instructions) 

The symbol || denotes “or”, and the symbol && denotes “and”. The further in­
structions are carried out only if the proposition following the word if is true. On 
closer inspection, this big expression is built from two simpler propositions. Let A 
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be the proposition that x > 0, and let B be the proposition that y > 100. Then 
we can rewrite the condition this way: 

A or ((not A) and B) (3.2) 

A truth table reveals that this complicated expression is logically equivalent to 

A or B. (3.3) 

A B A or ((not A) and B) A or B 
T T T T 
T F T T 
F T T T 
F F F F 

This means that we can simplify the code snippet without changing the program’s 
behavior: 

if ( x > 0 || y > 100 ) 
. . . 

(further instructions) 

The equivalence of (3.2) and (3.3) can also be confirmed reasoning by cases: 

A is T.	 Then an expression of the form (A or anything) will have truth value T. 
Since both expressions are of this form, both have the same truth value in 
this case, namely, T. 

A is F.	 Then (A or P ) will have the same truth value as P for any proposition, P . 
So (3.3) has the same truth value as B. Similarly, (3.2) has the same truth 
value as ((not F) and B), which also has the same value as B. So in this case, 
both expressions will have the same truth value, namely, the value of B. 

Rewriting a logical expression involving many variables in the simplest form 
is both difficult and important. Simplifying expressions in software might slightly 
increase the speed of your program. But, more significantly, chip designers face es­
sentially the same challenge. However, instead of minimizing && and || symbols 
in a program, their job is to minimize the number of analogous physical devices on 
a chip. The payoff is potentially enormous: a chip with fewer devices is smaller, 
consumes less power, has a lower defect rate, and is cheaper to manufacture. 

3.2.1	 Cryptic Notation 

Programming languages use symbols like && and ! in place of words like “and” 
and “not”. Mathematicians have devised their own cryptic symbols to represent 
these words, which are summarized in the table below. 
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English Cryptic Notation 

not P P (alternatively, P )¬
P and Q P ∧ Q 
P or Q P ∨ Q 
P implies Q P −→ Q 
if P then Q P −→ Q 
P iff Q P Q←→ 

For example, using this notation, “If P and not Q, then R” would be written: 

(P ∧ Q) −→ R 

This symbolic language is helpful for writing complicated logical expressions 
compactly. But words such as “OR” and “IMPLIES,” generally serve just as well as 
the cryptic symbols ∨ and −→, and their meaning is easy to remember. So we’ll 
use the cryptic notation sparingly, and we advise you to do the same. 

3.2.2 Logically Equivalent Implications 

Do these two sentences say the same thing? 

If I am hungry, then I am grumpy.

If I am not grumpy, then I am not hungry.


We can settle the issue by recasting both sentences in terms of propositional logic. 
Let P be the proposition “I am hungry”, and let Q be “I am grumpy”. The first 
sentence says “P implies Q” and the second says “(not Q) implies (not P )”. We 
can compare these two statements in a truth table: 

P 
T T T T 
T F F F 
F T T T 
F F T T 

Q P IMPLIES Q Q IMPLIES P 

Sure enough, the columns of truth values under these two statements are the same, 
which precisely means they are equivalent. In general, “(NOT Q) IMPLIES (NOT P )” 
is called the contrapositive of the implication “P IMPLIES Q.” And, as we’ve just 
shown, the two are just different ways of saying the same thing. 

In contrast, the converse of “P IMPLIES Q” is the statement “Q IMPLIES P ”. In 
terms of our example, the converse is: 

If I am grumpy, then I am hungry. 
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This sounds like a rather different contention, and a truth table confirms this sus­
picion: 

P 
T 
T 
F 
F 

Q 
T T T 
F F T 
T T F 
F T T 

P IMPLIES Q Q IMPLIES P 

Thus, an implication is logically equivalent to its contrapositive but is not equiva­
lent to its converse. 

One final relationship: an implication and its converse together are equivalent 
to an iff statement, specifically, to these two statements together. For example, 

If I am grumpy, then I am hungry. 
If I am hungry, then I am grumpy. 

are equivalent to the single statement: 

I am grumpy iff I am hungry. 

Once again, we can verify this with a truth table: 

P Q (P IMPLIES Q) AND (Q IMPLIES P ) 
T T T T T 
T F F F T 
F T T F F 
F F T T T 

Q IFF P 
T

F

F

T


The underlined operators have the same column of truth values, proving that the 
corresponding formulas are equivalent. 
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SAT 

A proposition is satisfiable if some setting of the variables makes the proposition 
true. For example, P AND Q is satisfiable because the expression is true when P 
is true and Q is false. On the other hand, P AND P is not satisfiable because the 
expression as a whole is false for both settings of P . But determining whether or 
not a more complicated proposition is satisfiable is not so easy. How about this 
one? 

(P OR Q OR R) AND (P OR Q) AND (P OR R) AND (R OR Q) 

The general problem of deciding whether a proposition is satisfiable is called SAT. 
One approach to SAT is to construct a truth table and check whether or not a T 
ever appears. But this approach is not very efficient; a proposition with n variables 
has a truth table with 2n lines, so the effort required to decide about a proposition 
grows exponentially with the number of variables. For a proposition with just 30 
variables, that’s already over a billion! 

Is there a more efficient solution to SAT? In particular, is there some, presumably 
very ingenious, procedure that determines in a number of steps that grows polyno­
mially —like n2 of n14 —instead of exponentially, whether any given proposition 
is satifiable or not? No one knows. And an awful lot hangs on the answer. An effi­
cient solution to SAT would immediately imply efficient solutions to many, many 
other important problems involving packing, scheduling, routing, and circuit ver­
ification, among other things. This would be wonderful, but there would also be 
worldwide chaos. Decrypting coded messages would also become an easy task 
(for most codes). Online financial transactions would be insecure and secret com­
munications could be read by everyone. 

Recently there has been exciting progress on sat-solvers for practical applications 
like digital circuit verification. These programs find satisfying assignments with 
amazing efficiency even for formulas with millions of variables. Unfortunately, 
it’s hard to predict which kind of formulas are amenable to sat-solver methods, 
and for formulas that are NOT satisfiable, sat-solvers generally take exponential 
time to verify that. 

So no one has a good idea how to solve SAT more efficiently or else to prove that no 
efficient solution exists —researchers are completely stuck. This is the outstanding 
unanswered question in theoretical computer science. 
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3.2.3 Problems 

Class Problems 

Problem 3.4. 
This problem1 examines whether the following specifications are satisfiable: 

1. If the file system is not locked, then 

(a) new messages will be queued. 

(b) new messages will be sent to the messages buffer. 

(c) the system is functioning normally, and conversely, if the system is func­
tioning normally, then the file system is not locked. 

2. If new messages are not queued, then they will be sent to the messages buffer. 

3. New messages will not be sent to the message buffer. 

(a) Begin by translating the five specifications into propositional formulas using 
four propositional variables: 

L ::= file system locked,


Q ::= new messages are queued,


B ::= new messages are sent to the message buffer,

N ::= system functioning normally.


(b) Demonstrate that this set of specifications is satisfiable by describing a single 
truth assignment for the variables L, Q,B, N and verifying that under this assign­
ment, all the specifications are true. 

(c) Argue that the assignment determined in part (b) is the only one that does the 
job. 

Problem 3.5. 
Propositional logic comes up in digital circuit design using the convention that T 
corresponds to 1 and F to 0. A simple example is a 2-bit half-adder circuit. This 
circuit has 3 binary inputs, a1, a0 and b, and 3 binary outputs, c, o1, o0. The 2-bit 
word a1a0 gives the binary representation of an integer, k, between 0 and 3. The 
3-bit word cs1s0 gives the binary representation of k + b. The third output bit, c, is 
called the final carry bit. 

So if k and b were both 1, then the value of a1a0 would be 01 and the value of 
the output cs1s0 would 010, namely, the 3-bit binary representation of 1 + 1. 

1From Rosen, 5th edition, Exercise 1.1.36 
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In fact, the final carry bit equals 1 only when all three binary inputs are 1, that 
is, when k = 3 and b = 1. In that case, the value of cs1s0 is 100, namely, the binary 
representation of 3 + 1. 

This 2-bit half-adder could be described by the following formulas: 

c0 = b 

s0 = a0 XOR c0 

c1 = a0 AND c0 the carry into column 1 
s1 = a1 XOR c1 

c2 = a1 AND c1 the carry into column 2 
c = c2. 

(a) Generalize the above construction of a 2-bit half-adder to an n + 1 bit half-
adder with inputs an, . . . , a1, a0 and b for arbitrary n ≥ 0. That is, give simple 
formulas for si and ci for 0 ≤ i ≤ n + 1, where ci is the carry into column i and 
c = cn+1. 

(b) Write similar definitions for the digits and carries in the sum of two n + 1-bit 
binary numbers an . . . a1a0 and bn . . . b1b0. 

Visualized as digital circuits, the above adders consist of a sequence of single-
digit half-adders or adders strung together in series. These circuits mimic ordinary 
pencil-and-paper addition, where a carry into a column is calculated directly from 
the carry into the previous column, and the carries have to ripple across all the 
columns before the carry into the final column is determined. Circuits with this 
design are called ripple-carry adders. Ripple-carry adders are easy to understand 
and remember and require a nearly minimal number of operations. But the higher-
order output bits and the final carry take time proportional to n to reach their final 
values. 
(c) How many of each of the propositional operations does your adder from 

part (b) use to calculate the sum? 

Problem 3.6. (a) A propositional formula is valid iff it is equivalent to T. Verify by 
truth table that 

(P IMPLIES Q) OR (Q IMPLIES P ) 

is valid. 

(b) Let P and Q be propositional formulas. Describe a single propositional for­
mula, R, involving P and Q such that R is valid iff P and Q are equivalent. 

(c) A propositional formula is satisfiable iff there is an assignment of truth values 
to its variables —an environment —which makes it true. Explain why 

P is valid iff NOT(P ) is not satisfiable. 



48 CHAPTER 3. PROPOSITIONAL FORMULAS 

(d) A set of propositional formulas P1, . . . , Pk is consistent iff there is an environ­
ment in which they are all true. Write a formula, S, so that the set P1, . . . , Pk is not 
consistent iff S is valid. 

Homework Problems 

Problem 3.7. 
Considerably faster adder circuits work by computing the values in later columns 
for both a carry of 0 and a carry of 1, in parallel. Then, when the carry from the 
earlier columns finally arrives, the pre-computed answer can be quickly selected. 
We’ll illustrate this idea by working out the equations for an n +1-bit parallel half-
adder. 

Parallel half-adders are built out of parallel “add1” modules. An n +1-bit add1 
module takes as input the n +1-bit binary representation, an . . . a1a0, of an integer, 
s, and produces as output the binary representation, c pn . . . p1 p0, of s + 1. 
(a) A 1-bit add1 module just has input a0. Write propositional formulas for its 

outputs c and p0. 

(b) Explain how to build an n + 1-bit parallel half-adder from an n + 1-bit add1 
module by writing a propositional formula for the half-adder output, oi, using 
only the variables ai, pi, and b. 

We can build a double-size add1 module with 2(n +1) inputs using two single-
size add1 modules with n+1 inputs. Suppose the inputs of the double-size module 
are a2n+1, . . . , a1, a0 and the outputs are c, p2n+1, . . . , p1, p0. The setup is illustrated 
in Figure 3.1. 

Namely, the first single size add1 module handles the first n + 1 inputs. The 
inputs to this module are the low-order n + 1 input bits an, . . . , a1, a0, and its out­
puts will serve as the first n + 1 outputs pn, . . . , p1, p0 of the double-size module. 
Let c(1) be the remaining carry output from this module. 

The inputs to the second single-size module are the higher-order n + 1 input 
bits a2n+1, . . . , an+2, an+1. Call its first n + 1 outputs rn, . . . , r1, r0 and let c(2) be its 
carry. 
(c) Write a formula for the carry, c, in terms of c(1) and c(2). 

(d) Complete the specification of the double-size module by writing propositional 
formulas for the remaining outputs, pi, for n + 1 ≤ i ≤ 2n + 1. The formula for pi 

should only involve the variables ai, ri−(n+1), and c(1). 

(e) Parallel half-adders are exponentially faster than ripple-carry half-adders. Con­
firm this by determining the largest number of propositional operations required 
to compute any one output bit of an n-bit add module. (You may assume n is a 
power of 2.) 
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Figure 3.1: Structure of a Double-size Add1 Module. 
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