
Chapter 2 

The Well Ordering Principle 

Every nonempty set of nonnegative integers has a smallest element. 

This statement is known as The Well Ordering Principle. Do you believe it? 
Seems sort of obvious, right? But notice how tight it is: it requires a nonempty 
set —it’s false for the empty set which has no smallest element because it has no 
elements at all! And it requires a set of nonnegative integers —it’s false for the 
set of negative integers and also false for some sets of nonnegative rationals —for 
example, the set of positive rationals. So, the Well Ordering Principle captures 
something special about the nonnegative integers. 

2.1 Well Ordering Proofs 

While the Well Ordering Principle may seem obvious, it’s hard to see offhand why 
it is useful. But in fact, it provides one of the most important proof rules in discrete 
mathematics. 

In fact, looking back, we took the Well Ordering Principle for granted in prov­
ing that 

√
2 is irrational. That proof assumed that for any positive integers m and 

n, the fraction m/n can be written in lowest terms, that is, in the form m�/n� where 
m� and n� are positive integers with no common factors. How do we know this is 
always possible? 

Suppose to the contrary that there were m, n ∈ Z+ such that the fraction m/n 
cannot be written in lowest terms. Now let C be the set of positive integers that are 
numerators of such fractions. Then m ∈ C, so C is nonempty. Therefore, by Well 
Ordering, there must be a smallest integer, m0 ∈ C. So by definition of C, there is 
an integer n0 > 0 such that 

the fraction 
m0 cannot be written in lowest terms. 
n0 
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This means that m0 and n0 must have a common factor, p > 1. But 

m0/p m0 = , 
n0/p n0 

so any way of expressing the left hand fraction in lowest terms would also work 
for m0/n0, which implies 

m0/p
the fraction cannot be in written in lowest terms either. 

n0/p 

So by definition of C, the numerator, m0/p, is in C. But m0/p < m0, which contra­
dicts the fact that m0 is the smallest element of C. 

Since the assumption that C is nonempty leads to a contradiction, it follows 
that C must be empty. That is, that there are no numerators of fractions that can’t 
be written in lowest terms, and hence there are no such fractions at all. 

We’ve been using the Well Ordering Principle on the sly from early on! 

2.2 Template for Well Ordering Proofs 

More generally, there is a standard way to use Well Ordering to prove that some 
property, P (n) holds for every nonnegative integer, n. Here is a standard way to 
organize such a well ordering proof: 

To prove that “P (n) is true for all n ∈ N” using the Well Ordering Principle: 

•	 Define the set, C, of counterexamples to P being true. Namely, definea 

C ::= {n ∈ N | P (n) is false} . 

•	 Assume for proof by contradiction that C is nonempty. 

•	 By the Well Ordering Principle, there will be a smallest element, n, in C. 

•	 Reach a contradiction (somehow) —often by showing how to use n to find 
another member of C that is smaller than n. (This is the open-ended part of 
the proof task.) 

•	 Conclude that C must be empty, that is, no counterexamples exist. QED 

aThe notation {n | P (n)} means “the set of all elements n, for which P (n) is true. 
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2.2.1 Problems 

Class Problems 

Problem 2.1. 
The proof below uses the Well Ordering Principle to prove that every amount of 
postage that can be paid exactly using only 6 cent and 15 cent stamps, is divisible 
by 3. Let the notation “j | k” indicate that integer j is a divisor of integer k, and 
let S(n) mean that exactly n cents postage can be paid using only 6 and 15 cent 
stamps. Then the proof shows that 

S(n) IMPLIES 3 | n, for all nonnegative integers n. (*) 

Fill in the missing portions (indicated by “. . . ”) of the following proof of (*). 

Let C be the set of counterexamples to (*), namely1 

C ::= {n | . . . } 

Assume for the purpose of obtaining a contradiction that C is nonempty.

Then by the WOP, there is a smallest number, m ∈ C. This m must be

positive because. . . .


But if S(m) holds and m is positive, then S(m − 6) or S(m − 15) must

hold, because. . . .


So suppose S(m − 6) holds. Then 3 | (m − 6), because. . .


But if 3 | (m − 6), then obviously 3 | m, contradicting the fact that m is

a counterexample.


Next suppose S(m − 15) holds. Then the proof for m − 6 carries over

directly for m − 15 to yield a contradiction in this case as well. Since we

get a contradiction in both cases, we conclude that. . .


which proves that (*) holds.


Problem 2.2. 
Euler’s Conjecture in 1769 was that there are no positive integer solutions to the 
equation 

a 4 + b4 + c 4 = d4 . 

Integer values for a, b, c, d that do satisfy this equation, were first discovered in 
1986. So Euler guessed wrong, but it took more two hundred years to prove it. 

Now let’s consider Lehman’s2 equation, similar to Euler’s but with some coef­
ficients: 

8a 4 + 4b4 + 2c 4 = d4 (2.1) 
1The notation “{n | . . . }” means “the set of elements, n, such that . . . .”

2Suggested by Eric Lehman, a former 6.042 Lecturer.


http://en.wikipedia.org/wiki/Euler's_sum_of_powers_conjecture
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Prove that Lehman’s equation (2.1) really does not have any positive integer 
solutions. 

Hint: Consider the minimum value of a among all possible solutions to (2.1). 

Homework Problems 

Problem 2.3. 
Use the Well Ordering Principle to prove that any integer greater than or equal to 
8 can be represented as the sum of integer multiples of 3 and 5. 

2.3 Summing the Integers 

Let’s use this this template to prove 

Theorem. 
1 + 2 + 3 + + n = n(n + 1)/2	 (2.2)· · · 

for all nonnegative integers, n. 

First, we better address of a couple of ambiguous special cases before they trip 
us up: 

•	 If n = 1, then there is only one term in the summation, and so 1+2+3+ +n· · ·
is just the term 1. Don’t be misled by the appearance of 2 and 3 and the 
suggestion that 1 and n are distinct terms! 

•	 If n ≤ 0, then there are no terms at all in the summation. By convention, the 
sum in this case is 0. 

So while the dots notation is convenient, you have to watch out for these special 
cases where the notation is misleading! (In fact, whenever you see the dots, you 
should be on the lookout to be sure you understand the pattern, watching out for 
the beginning and the end.) 

We could have eliminated the need for guessing by rewriting the left side of (2.2) 
with summation notation: 

n

i or i. 
i=1 1≤i≤n 

Both of these expressions denote the sum of all values taken by the expression to 
the right of the sigma as the variable, i, ranges from 1 to n. Both expressions make 
it clear what (2.2) means when n = 1. The second expression makes it clear that 
when n = 0, there are no terms in the sum, though you still have to know the 
convention that a sum of no numbers equals 0 (the product of no numbers is 1, by 
the way). 

OK, back to the proof: 
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Proof. By contradiction. Assume that the theorem is false. Then, some nonnegative 
integers serve as counterexamples to it. Let’s collect them in a set: 

C ::= n ∈ N | 1 + 2 + 3 + · · · + n =� n(n 
2
+ 1) 

. 

By our assumption that the theorem admits counterexamples, C is a nonempty set 
of nonnegative integers. So, by the Well Ordering Principle, C has a minimum 
element, call it c. That is, c is the smallest counterexample to the theorem. 

Since c is the smallest counterexample, we know that (2.2) is false for n = c but 
true for all nonnegative integers n < c. But (2.2) is true for n = 0, so c > 0. This 
means c−1 is a nonnegative integer, and since it is less than c, equation (2.2) is true 
for c − 1. That is, 

1 + 2 + 3 + + (c − 1) = 
(c − 1)c

.· · · 
2 

But then, adding c to both sides we get 

1 + 2 + 3 + + (c − 1) + c =
(c − 1)c 

+ c = 
c2 − c + 2c 

= 
c(c + 1) 

,· · · 
2 2 2 

which means that (2.2) does hold for c, after all! This is a contradiction, and we are 
done. � 

2.3.1 Problems 

Class Problems 

Problem 2.4. 
Use the Well Ordering Principle to prove that 

n� 
k2 = 

n(n + 1)(2n + 1) 
. (2.3)

6 
k=0 

for all nonnegative integers, n. 

2.4 Factoring into Primes 

We’ve previously taken for granted the Prime Factorization Theorem that every inte­
ger greater than one has a unique3 expression as a product of prime numbers. This 
is another of those familiar mathematical facts which are not really obvious. We’ll 
prove the uniqueness of prime factorization in a later chapter, but well ordering 
gives an easy proof that every integer greater than one can be expressed as some 
product of primes. 

Theorem 2.4.1. Every natural number can be factored as a product of primes. 
3. . . unique up to the order in which the prime factors appear 
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Proof. The proof is by Well Ordering. 
Let C be the set of all integers greater than one that cannot be factored as a 

product of primes. We assume C is not empty and derive a contradiction. 
If C is not empty, there is a least element, n ∈ C, by Well Ordering. The n can’t 

be prime, because a prime by itself is considered a (length one) product of primes 
and no such products are in C. 

So n must be a product of two integers a and b where 1 < a, b < n. Since a and b 
are smaller than the smallest element in C, we know that a, b /∈ C. In other words, 
a can be written as a product of primes p1p2 · · · pk and b as a product of primes 
q1 · · · ql. Therefore, n = p1 · · · pkq1 · · · ql can be written as a product of primes, 
contradicting the claim that n ∈ C. Our assumption that C =� ∅ must therefore be 
false. � 
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