
Chapter 1 

What is a Proof? 

1.1 Mathematical Proofs 

A proof is a method of establishing truth. What constitutes a proof differs among 
fields. 

•	 Legal truth is decided by a jury based on allowable evidence presented at 
trial. 

•	 Authoritative truth is specified by a trusted person or organization. 

•	 Scientific truth1 is confirmed by experiment. 

•	 Probable truth is established by statistical analysis of sample data. 

•	 Philosophical proof involves careful exposition and persuasion typically based 
on a series of small, plausible arguments. The best example begins with 
“Cogito ergo sum,” a Latin sentence that translates as “I think, therefore I 
am.” It comes from the beginning of a 17th century essay by the mathemati­
cian/philospher, René Descartes, and it is one of the most famous quotes in 
the world: do a web search on the phrase and you will be flooded with hits. 

Deducing your existence from the fact that you’re thinking about your exis­
tence is a pretty cool and persuasive-sounding first axiom. However, with 
just a few more lines of argument in this vein, Descartes goes on to conclude 
that there is an infinitely beneficent God. Whether or not you believe in a 
beneficent God, you’ll probably agree that any very short proof of God’s ex­
istence is bound to be far-fetched. So even in masterful hands, this approach 
is not reliable. 

1Actually, only scientific falsehood can be demonstrated by an experiment —when the experiment 
fails to behave as predicted. But no amount of experiment can confirm that the next experiment won’t 
fail. For this reason, scientists rarely speak of truth, but rather of theories that accurately predict past, 
and anticipated future, experiments. 
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http://www.btinternet.com/~glynhughes/squashed/descartes.htm
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Mathematics also has a specific notion of “proof.” 

Definition. A formal proof of a proposition is a chain of logical deductions leading to 
the proposition from a base set of axioms. 

The three key ideas in this definition are highlighted: proposition, logical de­
duction, and axiom. In the next sections, we’ll discuss these three ideas along with 
some basic ways of organizing proofs. 

1.1.1 Problems 

Class Problems 

Problem 1.1. 
Identify exactly where the bugs are in each of the following bogus proofs.2 

(a) Bogus Claim: 1/8 > 1/4. 

Bogus proof. 

3 > 2


3 log10(1/2) > 2 log10(1/2)


log10(1/2)3 > log10(1/2)2


(1/2)3 > (1/2)2 ,


and the claim now follows by the rules for multiplying fractions. � 

(b) Bogus proof : 1¢ = $0.01 = ($0.1)2 = (10¢)2 = 100¢ = $1. � 

(c) Bogus Claim: If a and b are two equal real numbers, then a = 0. 

Bogus proof. 

a = b


a 2 = ab


a 2 − b2 = ab − b2


(a − b)(a + b) = (a − b)b 

a + b = b 

a = 0. 

2From Stueben, Michael and Diane Sandford. Twenty Years Before the Blackboard, Mathematical Asso­
ciation of America, ©1998. 
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Problem 1.2. 
It’s a fact that the Arithmetic Mean is at least as large the Geometric Mean, namely, 

a + b √
ab

2 
≥ 

for all nonnegative real numbers a and b. But there’s something objectionable 
about the following proof of this fact. What’s the objection, and how would you 
fix it? 

Bogus proof. 

a + b ? √
ab, so

2 
≥ 

? 
a + b ≥ 2

√
ab, so 

? 
a 2 + 2ab + b2 ≥ 4ab, so 

? 
a 2 − 2ab + b2 ≥ 0, so 

(a − b)2 ≥ 0 which we know is true. 

The last statement is true because a −b is a real number, and the square of a real 
number is never negative. This proves the claim. � 

Problem 1.3. 
Albert announces that he plans a surprise 6.042 quiz next week. His students won­
der if the quiz could be next Friday. The students realize that it obviously cannot, 
because if it hadn’t been given before Friday, everyone would know that there was 
only Friday left on which to give it, so it wouldn’t be a surprise any more. 

So the students ask whether Albert could give the surprise quiz Thursday? 
They observe that if the quiz wasn’t given before Thursday, it would have to be 
given on the Thursday, since they already know it can’t be given on Friday. But 
having figured that out, it wouldn’t be a surprise if the quiz was on Thursday 
either. Similarly, the students reason that the quiz can’t be on Wednesday, Tuesday, 
or Monday. Namely, it’s impossible for Albert to give a surprise quiz next week. 
All the students now relax, having concluded that Albert must have been bluffing. 

And since no one expects the quiz, that’s why, when Albert gives it on Tuesday 
next week, it really is a surprise! 

What do you think is wrong with the students’ reasoning? 

1.2 Propositions 

Definition. A proposition is a statement that is either true or false. 
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This definition sounds very general, but it does exclude sentences such as, 
“Wherefore art thou Romeo?” and “Give me an A!”. But not all propositions are 
mathematical. For example, “Albert’s wife’s name is ‘Irene’ ” happens to be true, 
and could be proved with legal documents and testimony of their children, but it’s 
not a mathematical statement. 

Mathematically meaningful propositions must be about well-defined mathe­
matical objects like numbers, sets, functions, relations, etc., and they must be stated 
using mathematically precise language. We can illustrate this with a few examples. 

Proposition 1.2.1. 2 + 3 = 5. 

This proposition is true. 
A prime is an integer greater than one that is not divisible by any integer greater 

than 1 besides itself, for example, 2, 3, 5, 7, 11, . . . . 

Proposition 1.2.2. For every nonnegative integer, n, the value of n2 + n + 41 is prime. 

Let’s try some numerical experimentation to check this proposition. Let 3 

p(n) ::= n 2 + n + 41. (1.1) 

We begin with p(0) = 41 which is prime. p(1) = 43 which is prime. p(2) = 47 
which is prime. p(3) = 53 which is prime. . . . p(20) = 461 which is prime. Hmmm, 
starts to look like a plausible claim. In fact we can keep checking through n = 39 
and confirm that p(39) = 1601 is prime. 

But p(40) = 402 + 40 + 41 = 41 41, which is not prime. So it’s not true that the · 
expression is prime for all nonnegative integers. In fact, it’s not hard to show that 
no nonconstant polynomial with integer coefficients can map all natural numbers 
into prime numbers. The point is that in general you can’t check a claim about an 
infinite set by checking a finite set of its elements, no matter how large the finite 
set. 

By the way, propositions like this about all numbers or other things are so com­
mon that there is a special notation for it. With this notation, Proposition 1.2.2 
would be 

∀n ∈ N. p(n) is prime. (1.2) 

Here the symbol ∀ is read “for all”. The symbol N stands for the set of nonnegative 
integers, namely, 0, 1, 2, 3, . . . (ask your TA for the complete list). The symbol “∈ ” 
is read as “is a member of” or simply as “is in”. The period after the N is just a 
separator between phrases. 

Here are two even more extreme examples: 

Proposition 1.2.3. a4 + b4 + c4 = d4 has no solution when a, b, c, d are positive integers. 

Euler (pronounced “oiler”) conjectured this in 1769. But the proposition was 
proven false 218 years later by Noam Elkies at a liberal arts school up Mass Ave. 
The solution he found was a = 95800, b = 217519, c = 414560, d = 422481. 

3The symbol ::= means “equal by definition.” It’s always ok to simply write “=” instead of ::=, but 
reminding the reader that an equality holds by definition can be helpful. 
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In logical notation, Proposition 1.2.3 could be written, 

∀a ∈ Z+ ∀b ∈ Z+ ∀c ∈ Z+ ∀d ∈ Z+ 4 + b4 + c 4 = d4 . a . 

Here, Z+ is a symbol for the positive integers. Strings of ∀’s like this are usually 
abbreviated for easier reading: 

∀a, b, c, d ∈ Z+ . a 4 + b4 + c 4 =� d4 . 

Proposition 1.2.4. 313(x3 + y3) = z3 has no solution when x, y, z ∈ Z+ . 

This proposition is also false, but the smallest counterexample has more than 
1000 digits! 

Proposition 1.2.5. Every map can be colored with 4 colors so that adjacent4 regions have 
different colors. 

This proposition is true and is known as the “Four-Color Theorem”. However, 
there have been many incorrect proofs, including one that stood for 10 years in the 
late 19th century before the mistake was found. An extremely laborious proof was 
finally found in 1976 by mathematicians Appel and Haken, who used a complex 
computer program to categorize the four-colorable maps; the program left a couple 
of thousand maps uncategorized, and these were checked by hand by Haken and 
his assistants—including his 15-year-old daughter. There was a lot of debate about 
whether this was a legitimate proof: the proof was too big to be checked without a 
computer, and no one could guarantee that the computer calculated correctly, nor 
did anyone have the energy to recheck the four-colorings of thousands of maps 
that were done by hand. Finally, about five years ago, a mostly intelligible proof 
of the Four-Color Theorem was found, though a computer is still needed to check 
colorability of several hundred special maps (see 

http://www.math.gatech.edu/˜thomas/FC/fourcolor.html). 5 

Proposition 1.2.6 (Goldbach). Every even integer greater than 2 is the sum of two 
primes. 

No one knows whether this proposition is true or false. It is known as Goldbach’s 
Conjecture, and dates back to 1742. 

For a computer scientist, some of the most important things to prove are the 
“correctness” programs and systems —whether a program or system does what 
it’s supposed to. Programs are notoriously buggy, and there’s a growing commu­
nity of researchers and practitioners trying to find ways to prove program correct­
ness. These efforts have been successful enough in the case of CPU chips that they 
are now routinely used by leading chip manufacturers to prove chip correctness 
and avoid mistakes like the notorious Intel division bug in the 1990’s. 

Developing mathematical methods to verify programs and systems remains an 
active research area. We’ll consider some of these methods later in the course. 

4Two regions are adjacent only when they share a boundary segment of positive length. They are 
not considered to be adjacent if their boundaries meet only at a few points. 

5The story of the Four-Color Proof is told in a well-reviewed popular (non-technical) book: “Four 
Colors Suffice. How the Map Problem was Solved.” Robin Wilson. Princeton Univ. Press, 2003, 276pp. 
ISBN 0-691-11533-8. 

http://www.math.gatech.edu/~thomas/FC/fourcolor.html
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1.3 Predicates 

A predicate is a proposition whose truth depends on the value of one or more vari­
ables. Most of the propostions above were defined in terms of predicates. For 
example, 

“n is a perfect square” 

is a predicate whose truth depends on the value of n. The predicate is true for 
n = 4 since four is a perfect square, but false for n = 5 since five is not a perfect 
square. 

Like other propositions, predicates are often named with a letter. Furthermore, 
a function-like notation is used to denote a predicate supplied with specific vari­
able values. For example, we might name our earlier predicate P : 

P (n) ::= “n is a perfect square” 

Now P (4) is true, and P (5) is false. 
This notation for predicates is confusingly similar to ordinary function nota­

tion. If P is a predicate, then P (n) is either true or false, depending on the value 
of n. On the other hand, if p is an ordinary function, like n2 + 1, then p(n) is a 
numerical quantity. Don’t confuse these two! 

1.4 The Axiomatic Method 

The standard procedure for establishing truth in mathematics was invented by Eu­
clid, a mathematician working in Alexandria, Egypt around 300 BC. His idea was 
to begin with five assumptions about geometry, which seemed undeniable based on 
direct experience. (For example, “There is a straight line segment between every 
pair of points.) Propositions like these that are simply accepted as true are called 
axioms. 

Starting from these axioms, Euclid established the truth of many additional 
propositions by providing “proofs”. A proof is a sequence of logical deductions 
from axioms and previously-proved statements that concludes with the proposi­
tion in question. You probably wrote many proofs in high school geometry class, 
and you’ll see a lot more in this course. 

There are several common terms for a proposition that has been proved. The 
different terms hint at the role of the proposition within a larger body of work. 

•	 Important propositions are called theorems. 

•	 A lemma is a preliminary proposition useful for proving later propositions. 

•	 A corollary is a proposition that follows in just a few logical steps from a 
theorem. 
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The definitions are not precise. In fact, sometimes a good lemma turns out to be 
far more important than the theorem it was originally used to prove. 

Euclid’s axiom-and-proof approach, now called the axiomatic method, is the 
foundation for mathematics today. In fact, just a handful of axioms, called the 
axioms Zermelo-Frankel with Choice (ZFC), together with a few logical deduction 
rules, appear to be sufficient to derive essentially all of mathematics. We’ll examine 
these in Chapter 4. 

1.5 Our Axioms 

The ZFC axioms are important in studying and justifying the foundations of math­
ematics, but for practical purposes, they are much too primitive. Proving theorems 
in ZFC is a little like writing programs in byte code instead of a full-fledged pro­
gramming language —by one reckoning, a formal proof in ZFC that 2 + 2 = 4 
requires more than 20,000 steps! So instead of starting with ZFC, we’re going to 
take a huge set of axioms as our foundation: we’ll accept all familiar facts from high 
school math! 

This will give us a quick launch, but you may find this imprecise specification 
of the axioms troubling at times. For example, in the midst of a proof, you may 
find yourself wondering, “Must I prove this little fact or can I take it as an axiom?” 
Feel free to ask for guidance, but really there is no absolute answer. Just be up 
front about what you’re assuming, and don’t try to evade homework and exam 
problems by declaring everything an axiom! 

1.5.1 Logical Deductions 

Logical deductions or inference rules are used to prove new propositions using pre­
viously proved ones. 

A fundamental inference rule is modus ponens. This rule says that a proof of P 
together with a proof that P IMPLIES Q is a proof of Q. 

Inference rules are sometimes written in a funny notation. For example, modus 
ponens is written: 

Rule. 
P, P IMPLIES Q


Q


When the statements above the line, called the antecedents, are proved, then we 
can consider the statement below the line, called the conclusion or consequent, to 
also be proved. 

A key requirement of an inference rule is that it must be sound: any assignment 
of truth values that makes all the antecedents true must also make the consequent 
true. So if we start off with true axioms and apply sound inference rules, every­
thing we prove will also be true. 

There are many other natural, sound inference rules, for example: 
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Rule. 
P IMPLIES Q, Q IMPLIES R 

P IMPLIES R 

Rule. 
NOT(P ) IMPLIES NOT(Q) 

Q IMPLIES P 

On the other hand, 

Rule. 
NOT(P ) IMPLIES NOT(Q) 

P IMPLIES Q 

is not sound: if P is assigned T and Q is assigned F, then the antecedent is true 
and the consequent is not. 

Note that a propositional inference rule is sound precisely when the conjunc­
tion (AND) of all its antecedents implies its consequent. 

As with axioms, we will not be too formal about the set of legal inference rules. 
Each step in a proof should be clear and “logical”; in particular, you should state 
what previously proved facts are used to derive each new conclusion. 

1.5.2 Patterns of Proof 

In principle, a proof can be any sequence of logical deductions from axioms and 
previously proved statements that concludes with the proposition in question. 
This freedom in constructing a proof can seem overwhelming at first. How do 
you even start a proof? 

Here’s the good news: many proofs follow one of a handful of standard tem­
plates. Each proof has it own details, of course, but these templates at least provide 
you with an outline to fill in. We’ll go through several of these standard patterns, 
pointing out the basic idea and common pitfalls and giving some examples. Many 
of these templates fit together; one may give you a top-level outline while others 
help you at the next level of detail. And we’ll show you other, more sophisticated 
proof techniques later on. 

The recipes below are very specific at times, telling you exactly which words to 
write down on your piece of paper. You’re certainly free to say things your own 
way instead; we’re just giving you something you could say so that you’re never at 
a complete loss. 

1.6 Proving an Implication 

Propositions of the form “If P , then Q” are called implications. This implication is 
often rephrased as “P IMPLIES Q.” 

Here are some examples: 
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•	 (Quadratic Formula) If ax2 + bx + c = 0 and a = 0� , then 

x = −b ± b2 − 4ac /2a. 

•	 (Goldbach’s Conjecture) If n is an even integer greater than 2, then n is a sum 
of two primes. 

•	 If 0 ≤ x ≤ 2, then −x3 + 4x + 1 > 0. 

There are a couple of standard methods for proving an implication. 

1.6.1 Method #1 

In order to prove that P IMPLIES Q: 

1. Write, “Assume P .” 

2. Show that Q logically follows. 

Example 

Theorem 1.6.1. If 0 ≤ x ≤ 2, then −x3 + 4x + 1 > 0. 

Before we write a proof of this theorem, we have to do some scratchwork to 
figure out why it is true. 

The inequality certainly holds for x = 0; then the left side is equal to 1 and 
1 > 0. As x grows, the 4x term (which is positive) initially seems to have greater 
magnitude than −x3 (which is negative). For example, when x = 1, we have 
4x = 4, but −x3 = −1 only. In fact, it looks like −x3 doesn’t begin to dominate 
until x > 2. So it seems the −x3 + 4x part should be nonnegative for all x between 
0 and 2, which would imply that −x3 + 4x + 1 is positive. 

So far, so good. But we still have to replace all those “seems like” phrases with 
solid, logical arguments. We can get a better handle on the critical −x3 + 4x part 
by factoring it, which is not too hard: 

−x 3 + 4x = x(2 − x)(2 + x) 

Aha! For x between 0 and 2, all of the terms on the right side are nonnegative. And 
a product of nonnegative terms is also nonnegative. Let’s organize this blizzard of 
observations into a clean proof. 

Proof. Assume 0 ≤ x ≤ 2. Then x, 2 − x, and 2 + x are all nonnegative. Therefore, 
the product of these terms is also nonnegative. Adding 1 to this product gives a 
positive number, so: 

x(2 − x)(2 + x) + 1 > 0 

Multiplying out on the left side proves that 

−x 3 + 4x + 1 > 0 

as claimed.	 � 
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There are a couple points here that apply to all proofs: 

•	 You’ll often need to do some scratchwork while you’re trying to figure out 
the logical steps of a proof. Your scratchwork can be as disorganized as you 
like— full of dead-ends, strange diagrams, obscene words, whatever. But 
keep your scratchwork separate from your final proof, which should be clear 
and concise. 

•	 Proofs typically begin with the word “Proof” and end with some sort of 
doohickey like � or “q.e.d”. The only purpose for these conventions is to 
clarify where proofs begin and end. 

1.6.2 Method #2 - Prove the Contrapositive 

An implication (“P IMPLIES Q”) is logically equivalent to its contrapositive 

NOT(Q) IMPLIES NOT(P ) 

Proving one is as good as proving the other, and proving the contrapositive is 
sometimes easier than proving the original statement. If so, then you can proceed 
as follows: 

1. Write, “We prove the contrapositive:” and then state the contrapositive. 

2. Proceed as in Method #1. 

Example


Theorem 1.6.2. If r is irrational, then 
√

r is also irrational.


Recall that rational numbers are equal to a ratio of integers and irrational num­
bers are not. So we must show that if r is not a ratio of integers, then 

√
r is also not 

a ratio of integers. That’s pretty convoluted! We can eliminate both not’s and make 
the proof straightforward by considering the contrapositive instead. 

Proof. We prove the contrapositive: if 
√

r is rational, then r is rational. 
Assume that 

√
r is rational. Then there exist integers a and b such that: 

a√
r = 

b 

Squaring both sides gives: 
2a

r = 
b2 

Since a2 and b2 are integers, r is also rational.	 � 
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1.6.3 Problems 

Homework Problems 

Problem 1.4. 
Show that log7 n is either an integer or irrational, where n is a positive integer. 
Use whatever familiar facts about integers and primes you need, but explicitly 
state such facts. (This problem will be graded on the clarity and simplicity of your 
proof. If you can’t figure out how to prove it, ask the staff for help and they’ll tell 
you how.) 

1.7 Proving an “If and Only If” 

Many mathematical theorems assert that two statements are logically equivalent; 
that is, one holds if and only if the other does. Here is an example that has been 
known for several thousand years: 

Two triangles have the same side lengths if and only if two side lengths 
and the angle between those sides are the same. 

The phrase “if and only if” comes up so often that it is often abbreviated “iff”. 

1.7.1 Method #1: Prove Each Statement Implies the Other 

The statement “P IFF Q” is equivalent to the two statements “P IMPLIES Q” and 
“Q IMPLIES P ”. So you can prove an “iff” by proving two implications: 

1. Write, “We prove P implies Q and vice-versa.” 

2. Write, “First, we show P implies Q.” Do this by one of the methods in Sec­
tion 1.6. 

3. Write, “Now, we show Q implies P .” Again, do this by one of the methods 
in Section 1.6. 

1.7.2 Method #2: Construct a Chain of Iffs 

In order to prove that P is true iff Q is true: 

1. Write, “We construct a chain of if-and-only-if implications.” 

2. Prove P is equivalent to a second statement which is equivalent to a third 
statement and so forth until you reach Q. 

This method sometimes requires more ingenuity than the first, but the result can 
be a short, elegant proof. 



� 

� 

� 

24 CHAPTER 1. WHAT IS A PROOF? 

Example 

The standard deviation of a sequence of values x1, x2, . . . , xn is defined to be: 

(x1 − µ)2 + (x2 − µ)2 + · · · + (xn − µ)2 
(1.3) 

n 

where µ is the mean of the values: 

µ ::= 
x1 + x2 + · · · + xn 

n 

Theorem 1.7.1. The standard deviation of a sequence of values x1, . . . , xn is zero iff all 
the values are equal to the mean. 

For example, the standard deviation of test scores is zero if and only if everyone 
scored exactly the class average. 

Proof. We construct a chain of “iff” implications, starting with the statement that 
the standard deviation (1.3) is zero: 

(x1 − µ)2 + (x2 − µ)2 + · · · + (xn − µ)2 
= 0. (1.4) 

n 

Now since zero is the only number whose square root is zero, equation (1.4) holds 
iff 

(x1 − µ)2 + (x2 − µ)2 + + (xn − µ)2 = 0. (1.5)· · · 

Now squares of real numbers are always nonnegative, so every term on the left 
hand side of equation (1.5) is nonnegative. This means that (1.5) holds iff 

Every term on the left hand side of (1.5) is zero. (1.6) 

But a term (xi − µ)2 is zero iff xi = µ, so (1.6) is true iff 

Every xi equals the mean. 

1.8 Proof by Cases 

Breaking a complicated proof into cases and proving each case separately is a use­
ful, common proof strategy. Here’s an amusing example. 

Let’s agree that given any two people, either they have met or not. If every pair 
of people in a group has met, we’ll call the group a club. If every pair of people in 
a group has not met, we’ll call it a group of strangers. 

Theorem. Every collection of 6 people includes a club of 3 people or a group of 3 strangers. 
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Proof. The proof is by case analysis6. Let x denote one of the six people. There are 
two cases: 

1. Among 5 other people besides x, at least 3 have met x. 

2. Among the 5 other people, at least 3 have not met x. 

Now we have to be sure that at least one of these two cases must hold,7 but 
that’s easy: we’ve split the 5 people into two groups, those who have shaken hands 
with x and those who have not, so one the groups must have at least half the 
people. 

Case 1: Suppose that at least 3 people did meet x.

This case splits into two subcases:


Case 1.1: No pair among those people met each other. Then these peo­
ple are a group of at least 3 strangers. So the Theorem holds in this 
subcase. 

Case 1.2: Some pair among those people have met each other. Then 
that pair, together with x, form a club of 3 people. So the Theorem 
holds in this subcase. 

This implies that the Theorem holds in Case 1. 
Case 2: Suppose that at least 3 people did not meet x. 
This case also splits into two subcases: 

Case 2.1: Every pair among those people met each other. Then these 
people are a club of at least 3 people. So the Theorem holds in this 
subcase. 

Case 2.2: Some pair among those people have not met each other. Then 
that pair, together with x, form a group of at least 3 strangers. So the 
Theorem holds in this subcase. 

This implies that the Theorem also holds in Case 2, and therefore holds in all cases. 

1.8.1 Problems 

Class Problems 

Problem 1.5. 
If we raise an irrational number to an irrational power, can the result be rational? 

Show that it can by considering 
√

2 
√

2 
and arguing by cases. 

6Describing your approach at the outset helps orient the reader. 
7Part of a case analysis argument is showing that you’ve covered all the cases. Often this is obvious, 

because the two cases are of the form “P ” and “not P ”. However, the situation above is not stated quite 
so simply. 
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Homework Problems 

Problem 1.6. 
For n = 40, the value of polynomial p(n) ::= n2 + n + 41 is not prime, as noted 
in Chapter 1 of the Course Text. But we could have predicted based on general 
principles that no nonconstant polynomial, q(n), with integer coefficients can map 
each nonnegative integer into a prime number. Prove it. 

Hint: Let c ::= q(0) be the constant term of q. Consider two cases: c is not 
prime, and c is prime. In the second case, note that q(cn) is a multiple of c for all 
n ∈ Z. You may assume the familiar fact that the magnitude (absolute value) of 
any nonconstant polynomial, q(n), grows unboundedly as n grows. 

1.9 Proof by Contradiction 

In a proof by contradiction or indirect proof, you show that if a proposition were false, 
then some false fact would be true. Since a false fact can’t be true, the proposition 
had better not be false. That is, the proposition really must be true. 

Proof by contradiction is always a viable approach. However, as the name sug­
gests, indirect proofs can be a little convoluted. So direct proofs are generally 
preferable as a matter of clarity. 

Method: In order to prove a proposition P by contradiction: 

1. Write, “We use proof by contradiction.” 

2. Write, “Suppose P is false.” 

3. Deduce something known to be false (a logical contradiction). 

4. Write, “This is a contradiction. Therefore, P must be true.” 

Example 

Remember that a number is rational if it is equal to a ratio of integers. For example, 
3.5 = 7/2 and 0.1111 = 1/9 are rational numbers. On the other hand, we’ll · · · 
prove by contradiction that 

√
2 is irrational. 

Theorem 1.9.1. 
√

2 is irrational. 

Proof. We use proof by contradiction. Suppose the claim is false; that is, 
√

2 is 
rational. Then we can write 

√
2 as a fraction n/d in lowest terms. 

Squaring both sides gives 2 = n2/d2 and so 2d2 = n2 . This implies that n is a 
multiple of 2. Therefore n2 must be a multiple of 4. But since 2d2 = n2, we know 
2d2 is a multiple of 4 and so d2 is a multiple of 2. This implies that d is a multiple 
of 2. 

So the numerator and denominator have 2 as a common factor, which contra­
dicts the fact that n/d is in lowest terms. So 

√
2 must be irrational. � 
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1.9.1 Problems 

Class Problems 

Problem 1.7. 
Generalize the proof from lecture (reproduced below) that 

√
2 is irrational, for ex­

3ample, how about 
√

2? Remember that an irrational number is a number that 
cannot be expressed as a ratio of two integers. 

Theorem. 
√

2 is an irrational number. 

Proof. The proof is by contradiction: assume that 
√

2 is rational, that is, 

n√
2 = , (1.7)

d 

where n and d are integers. Now consider the smallest such positive 
integer denominator, d. We will prove in a moment that the numerator, 
n, and the denominator, d, are both even. This implies that 

n/2 
d/2 

is a fraction equal to 
√

2 with a smaller positive integer denominator, a 
contradiction. 

Since the assumption that 
√

2 is rational leads to this contradic­
tion, the assumption must be false. That is, 

√
2 is indeed irrational. 

This italicized comment on the implication of the contradic­
tion normally goes without saying, but since this is the first 
6.042 exercise about proof by contradiction, we’ve said it. 

To prove that n and d have 2 as a common factor, we start by squaring 
both sides of (1.7) and get 2 = n2/d2, so 

2d2 = n 2 . (1.8) 

So 2 is a factor of n2, which is only possible if 2 is in fact a factor of n. 

This means that n = 2k for some integer, k, so 

n 2 = (2k)2 = 4k2 . (1.9) 

Combining (1.8) and (1.9) gives 2d2 = 4k2, so 

d2 = 2k2 . (1.10) 

So 2 is a factor of d2, which again is only possible if 2 is in fact also a 
factor of d, as claimed. � 
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Problem 1.8. 
Here is a different proof that 

√
2 is irrational, taken from the American Mathemat­

ical Monthly, v.116, #1, Jan. 2009, p.69: 

Proof. Suppose for the sake of contradiction that 
√

2 is rational, and choose the least 
integer, q > 0, such that 

�√
2 − 1 

� 
q is a nonnegative integer. Let q� ::= 

�√
2 − 1 

� 
q. 

Clearly 0 < q� < q. But an easy computation shows that 
�√

2 − 1 
� 
q� is a nonnega­

tive integer, contradicting the minimality of q. � 

(a) This proof was written for an audience of college teachers, and is a little more 
concise than desirable at this point in 6.042. Write out a more complete version 
which includes an explanation of each step. 

(b) Now that you have justified the steps in this proof, do you have a preference 
for one of these proofs over the other? Why? Discuss these questions with your 
teammates for a few minutes and summarize your team’s answers on your white-
board. 

Problem 1.9. 
Here is a generalization of Problem 1.7 that you may not have thought of: 

mLemma 1.9.2. Let the coefficients of the polynomial a0+a1x+a2x
2+ +an−1x

m−1+x· · ·
be integers. Then any real root of the polynomial is either integral or irrational. 

m(a) Explain why Lemma 1.9.2 immediately implies that 
√

k is irrational when­
ever k is not an mth power of some integer. 

(b) Collaborate with your tablemates to write a clear, textbook quality proof of 
Lemma 1.9.2 on your whiteboard. (Besides clarity and correctness, textbook qual­
ity requires good English with proper punctuation. When a real textbook writer 
does this, it usually takes multiple revisions; if you’re satisfied with your first draft, 
you’re probably misjudging.) You may find it helpful to appeal to the following: 
Lemma 1.9.3. If a prime, p, is a factor of some power of an integer, then it is a factor of 
that integer. 
You may assume Lemma 1.9.3 without writing down its proof, but see if you can 
explain why it is true. 

Homework Problems 

Problem 1.10. 
The fact that that there are irrational numbers a, b such that ab is rational was 
proved in Problem 1.5. Unfortunately, that proof was nonconstructive: it didn’t 
reveal a specific pair, a, b, with this property. But in fact, it’s easy to do this: let 
a ::= 

√
2 and b ::= 2 log2 3. 

bWe know 
√

2 is irrational, and obviously a = 3. Finish the proof that this a, b 
pair works, by showing that 2 log2 3 is irrational. 
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1.10 Good Proofs in Practice 

One purpose of a proof is to establish the truth of an assertion with absolute cer­
tainty. Mechanically checkable proofs of enormous length or complexity can ac­
complish this. But humanly intelligible proofs are the only ones that help someone 
understand the subject. Mathematicians generally agree that important mathemat­
ical results can’t be fully understood until their proofs are understood. That is why 
proofs are an important part of the curriculum. 

To be understandable and helpful, more is required of a proof than just logical 
correctness: a good proof must also be clear. Correctness and clarity usually go 
together; a well-written proof is more likely to be a correct proof, since mistakes 
are harder to hide. 

In practice, the notion of proof is a moving target. Proofs in a professional 
research journal are generally unintelligible to all but a few experts who know 
all the terminology and prior results used in the proof. Conversely, proofs in the 
first weeks of a beginning course like 6.042 would be regarded as tediously long-
winded by a professional mathematician. In fact, what we accept as a good proof 
later in the term will be different from what we consider good proofs in the first 
couple of weeks of 6.042. But even so, we can offer some general tips on writing 
good proofs: 

State your game plan. A good proof begins by explaining the general line of rea­
soning, for example, “We use case analysis” or “We argue by contradiction.” 

Keep a linear flow. Sometimes proofs are written like mathematical mosaics, with 
juicy tidbits of independent reasoning sprinkled throughout. This is not 
good. The steps of an argument should follow one another in an intellig­
ble order. 

A proof is an essay, not a calculation. Many students initially write proofs the way 
they compute integrals. The result is a long sequence of expressions without 
explanation, making it very hard to follow. This is bad. A good proof usually 
looks like an essay with some equations thrown in. Use complete sentences. 

Avoid excessive symbolism. Your reader is probably good at understanding words, 
but much less skilled at reading arcane mathematical symbols. So use words 
where you reasonably can. 

Revise and simplify. Your readers will be grateful. 

Introduce notation thoughtfully. Sometimes an argument can be greatly simpli­
fied by introducing a variable, devising a special notation, or defining a new 
term. But do this sparingly since you’re requiring the reader to remember all 
that new stuff. And remember to actually define the meanings of new vari­
ables, terms, or notations; don’t just start using them! 

Structure long proofs. Long programs are usually broken into a hierarchy of smaller 
procedures. Long proofs are much the same. Facts needed in your proof that 
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are easily stated, but not readily proved are best pulled out and proved in 
preliminary lemmas. Also, if you are repeating essentially the same argu­
ment over and over, try to capture that argument in a general lemma, which 
you can cite repeatedly instead. 

Be wary of the “obvious”. When familiar or truly obvious facts are needed in a 
proof, it’s OK to label them as such and to not prove them. But remember 
that what’s obvious to you, may not be —and typically is not —obvious to 
your reader. 

Most especially, don’t use phrases like “clearly” or “obviously” in an attempt 
to bully the reader into accepting something you’re having trouble proving. 
Also, go on the alert whenever you see one of these phrases in someone else’s 
proof. 

Finish. At some point in a proof, you’ll have established all the essential facts 
you need. Resist the temptation to quit and leave the reader to draw the 
“obvious” conclusion. Instead, tie everything together yourself and explain 
why the original claim follows. 

The analogy between good proofs and good programs extends beyond struc­
ture. The same rigorous thinking needed for proofs is essential in the design of 
critical computer systems. When algorithms and protocols only “mostly work” 
due to reliance on hand-waving arguments, the results can range from problem­
atic to catastrophic. An early example was the Therac 25, a machine that provided 
radiation therapy to cancer victims, but occasionally killed them with massive 
overdoses due to a software race condition. A more recent (August 2004) exam­
ple involved a single faulty command to a computer system used by United and 
American Airlines that grounded the entire fleet of both companies— and all their 
passengers! 

It is a certainty that we’ll all one day be at the mercy of critical computer sys­
tems designed by you and your classmates. So we really hope that you’ll develop 
the ability to formulate rock-solid logical arguments that a system actually does 
what you think it does! 
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