In-Class Problems Week 14, Wed.

Problem 1.

A gambler is placing \$1 bets on the "1st dozen" in roulette. This bet wins when a number from one to twelve comes in, and then the gambler gets his \$1 back plus \$3 more. Recall that there are 38 numbers on the roulette wheel.

The gambler's initial stake in $\$n$ and his target is $\$T$. He will keep betting until he runs out of money ("goes broke") or reachs his target. Let w_n be the probability of the gambler winning, that is, reaching target \$T before going broke.

(a) Write a linear recurrence for wn; you need *not* solve the recurrence.

(b) Let e_n be the expected number of bets until the game ends. Write a linear recurrence for e_n ; you need *not* solve the recurrence.

Problem 2.

Consider the following random-walk graph:

(a) Find a stationary distribution.

(b) If you start at node x and take a (long) random walk, does the distribution over nodes ever get close to the stationary distribution? Explain.

Consider the following random-walk graph:

(c) Find a stationary distribution.

Creative Commons \bigcirc 2010, [Prof. Albert R. Meyer.](http://people.csail.mit.edu/meyer)

(d) If you start at node w and take a (long) random walk, does the distribution over nodes ever get close to the stationary distribution? We don't want you to prove anything here, just write out a few steps and see what's happening.

Consider the following random-walk graph:

(e) Describe the stationary distributions for this graph.

(f) If you start at node b and take a long random walk, the probability you are at node d will be close to what fraction? Explain.

Appendix

A *random-walk graph* is a digraph such that each edge, $x \to y$, is labelled with a number, $p(x, y) > 0$, which will indicate the probability of following that edge starting at vertex x . Formally, we simply require that the sum of labels leaving each vertex is 1. That is, if we define for each vertex, x ,

out(*x*) ::= {*y* | *x*
$$
\rightarrow
$$
 y is an edge of the graph},

then

$$
\sum_{y \in \text{out}(x)} p(x, y) = 1.
$$

A *distribution*, *d*, is a labelling of each vertex, *x*, with a number, $d(x) \geq 0$, which will indicate the probability of being at x . Formally, we simply require that the sum of all the vertex labels is 1, that is,

$$
\sum_{x \in V} d(x) = 1,
$$

where V is the set of vertices.

The distribution, d �, *after ^a single step* of a random walk from distribution, d, is given by

$$
\widehat{d}(x) ::= \sum_{y \in \text{in}(x)} d(y) \cdot p(y, x),
$$

where

$$
in(x) ::= \{y \mid y \rightarrow x \text{ is an edge of the graph}\}.
$$

A distribution *d* is *stationary* if $d = d$, where *d* is the distribution after a single step of a random walk starting from d . In other words, d stationary implies

$$
d(x) ::= \sum_{y \in \text{in}(x)} d(y) \cdot p(y, x).
$$

6.042J / 18.062J Mathematics for Computer Science Spring 2010

For information about citing these materials or our Terms of Use, visit:<http://ocw.mit.edu/terms>.