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Deviation from 
the Mean
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Example: IQ 

IQ measure was constructed so

that
average IQ = 100.

What fraction of the people

can possibly have an IQ � 300?
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IQ Higher than 300? 

Fraction f with IQ � 300
adds � 300f to average, 
so 100 = avg IQ � 300f:

f � 100/300 = 1/3
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At most 1/3 of people 
have IQ � 300

IQ Higher than 300? 
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IQ Higher than x?

Besides mean = 100, 

we used only one fact about 

the distribution  of IQ: 

IQ is always nonnegative
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Pr{R � x} �
E R�� ��

x

Markov Bound 

If R is nonnegative, then 

for x � E[R]
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•�Weak

•�Obvious

•�Useful anyway 

Markov Bound 
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Suppose we are given that
IQ is always � 50?
Get a better bound using 

(IQ – 50)
since this is now � 0. 

IQ � 300, again 
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f contributes (300-50)f to
the average of (IQ-50), so 
      50 = E[IQ-50] � 250f

f � 50/250 = 1/5

IQ � 300, again 

Better bound from Markov by 
shifting R to have 0 as minimum 
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Pr{|R��| � x}

= Pr{(R��)2 � x2}
by Markov: 

Improving the Markov Bound 

variance of R 
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Chebyshev Bound 

Pr{|R - μ |� x} �
Var[R]

x2

Var[R] ::= E[(R - �)2]
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R probably not many �’s from μ: �
further than �     Pr � 1 

2�     Pr � 1/4 
3�     Pr � 1/9
4�     Pr � 1/16

Pr{|R -μ|� x} �
� 2

x2

Standard Deviation 
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Variance of an Indicator 

I an indicator with E[I]=p:

= E I�
�

�
�
�2p �p + p2
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Calculating Variance 

simple proofs applying linearity 
of E[] to the def of Var[]

Var[aR + b] = a2 Var[R]
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Calculating Variance 

providing R1,R2,…,Rn are
pairwise independent

Pairwise Independent Additivity

again, a simple proof applying 
linearity of E[] to the def of Var[]
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Deviation of 
Repeated Trials
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Even the stupidest man �by some instinct of 

nature per se and by no previous instruction 

(this is truly amazing) �knows for sure that 

the more observations ...that are taken, the 

less the danger will be of straying from the 

mark.
---Ars Conjectandi (The Art of Guessing), 1713* 

*taken from Grinstead \& Snell, 

http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html 

Introduction to Probability, American Mathematical Society, p. 310. 

Jacob D. Bernoulli (1659�1705)
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It certainly remains to be inquired whether 

after the number of observations has been 

increased, the probability…of obtaining the 

true ratio…finally exceeds any given degree 

of certainty; or whether the problem has, so 

to speak, its own asymptote �that is, whether 

some degree of certainty is given which one 

can never exceed. 

Jacob D. Bernoulli (1659�1705)
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Random var R with mean μ�

n independent observations 

R1,�, Rn

Repeated Trials
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Pr A
n
� μ ��{ } =

take average: 

Bernoulli question:  is it 
probably close to μ if n is big 

?

Repeated Trials
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Bernoulli answer: Weak Law of Large Numbers 

lim
n��

Pr{A
n
-μ � �} = ?

lim
n��

Pr{A
n
-μ >�} = 0

1
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Jacob D. Bernoulli (1659 – 1705) 

Therefore, this is the problem which I 

now set forth and make known after I 

have pondered over it for twenty years.

Both its novelty and its very great

usefulness, coupled with its just as 

great difficulty, can exceed in 

weight and value all the remaining 

chapters of this thesis. 
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Weak Law of Large Numbers 

lim
n��

Pr{A
n
-μ >�} = 0

will follow easily by Chebyshev
& variance properties
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=
nμ

n
= μ

Repeated Trials 
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So by Chebyshev

Pr{ A
n
- μ >�} �

Var A
n

�

�
�
�

�
�

�2

Weak Law of Large Numbers 

need only show 
Var[An]� 0 as n��
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Var A
n

�
�

�
�
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Repeated Trials 

� 0 QED
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Analysis of the Proof 

proof only used that R1,…,Rn have

•�same mean 

•�same variance

•�& variances add
� which follows from 

pairwise independence
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Pairwise Independent Sampling 

Let R1,…,Rn be pairwise independent 

random vars with the same finite

mean μ and variance �2.  Let 

                                            Then 

Pr A
n
-μ > �{ } �

1

n

�

�

�

�
�

�
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Theorem:
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Pairwise Independent Sampling 

The punchline:
we now know how big a sample is 
needed to estimate the mean of 
any* random variable within 
any* desired tolerance with 
any* desired probability 
*variance <�, tolerance > 0, 
  probability < 1 
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Team Problems 

Problems

1�3
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