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Great
Expectations

lec 13W.1 Albert R Meyer,            May 5, 2010 

Carnival Dice 

choose a number from 1 to 6, 

then roll 3 fair dice: 

win $1 for each match

lose $1 if no match
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Example: choose 5, then

 roll 2,3,4: lose $1 

roll 5,4,6: win  $1 

 roll 5,4,5: win  $2 

 roll 5,5,5: win  $3 

Carnival Dice 
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Carnival Dice 

Is this a

fair game?
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Carnival Dice 

# matches probability $ won 

0 125/216 -1

1 75/216 1

2 15/216 2

3 1/216 3
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so every 216 games, expect
0 matches about 125 times 
1 match     about 75 times 
2 matches about 15 times 
3 matches about once

Carnival Dice 
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Carnival Dice 

So on average expect to win: 

NOT fair! 

lec 13W.12 
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You can “expect” to lose 8 cents

per play. 

Carnival Dice 

               But you never actually 

lose 8 cents on any single play, 

this is just your average loss.
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Expected Value 

The expected value of

random variable R is

the average value of R

--with values weighted 

by their probabilities 
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The expected value of
random variable R is

 E[R]::= �v�Pr{R = v}

so E[$win in Carnival] =

Expected Value 
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Alternative definition: 

E[R] = R(�) �Pr{�}
��S

�

both forms are useful 

Expected Value 
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also called 

mean value, mean, or

expectation

Expected Value 
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The indicator variable for event A:

(Sanity check: 

IA and IB are independent iff

A and B are independent.) 

Indicator Variables 
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E[I] = 1 Pr{I=1} +

          0 Pr{I=0}

        = Pr{I=1}

Expectation of indicator I
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Expected #Heads 

n independent flips of a 
coin with bias p for Heads. 
How many Heads expected? 

E B
n,p

�
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�

��
= k � Pr k Heads{ }

k=0

n
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Expected #Heads 

we know how to get a closed 
formula for this sum, but we’ll 
see simpler approaches soon.
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Law of Total Expectation 

E[R] = E[R|A] �Pr{A}

+ E[R|A] �Pr{A}

conditional expectation: 

good for reasoning by cases 
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Let e(n) ::= expected #H’s in n flips. 

               = 1 + e(n-1)     if 1st flip H 

               = e(n-1)          if 1st flip T 

by Total Expectation: 

    e(n) = [1 + e(n-1)]�p + e(n-1)�q

    e(n) = e(n-1) + p 

Expected #Heads 

= np
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Mean Time to “Failure” 

E[# flips until first head]?

H

p q

H

p q

H

p q

B
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Mean Time to “Failure” 

E[# flips until first head]?

H

p q

B

B

now use Total Expectation
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Mean Time to “Failure” 

E[# flips until first head]?

H

p q

B

B

E =

E[# |1st is H]�p + E[# |1st is T]�q

1 1+E
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Mean Time to “Failure” 

E[# flips until first head]?

H

p q

B

B

E =         1 �p + [E+1] �    (1-p)
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now solve for E
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Mean Time to “Failure” 

E[# flips until first head]
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Mean Time to Failure 

application: if space station Mir 
has 1/150,000 chance of 
exploding in any given hour, 
after how may hours do 
we expect it to explode? 

150,000 hours � 17 years 
lec 13W.40 
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Linearity of Expectation 

R,S random variables, a,b
constants

E[aR + bS] = 
aE[R] + bE[S]
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even if R,S are dependent
Albert R Meyer,            May 5, 2010 

# H's = H
1
+ H

2
+� + H

n

Expected #Heads 

where Hi is indicator 
for Head on ith flip 
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Expected #Heads 

= E H
1

�
�

�
�

+ E H
2

�
�

�
�

+� + E H
n

�
�

�
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= n �E H
1

�
�

�
�
= np

so by linearity 
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Expected #hats returned

Say n people with hats leave 
their hats at a hat-check 
station.  The hats get totally 
scrambled randomly.  How 
many hats do we expect will 
be returned to their owners? 
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Let Ri be indicator for ith hat 
being returned to its owner 

Ri and Rj are not independent! 

lec 13W.48 

Expected #hats returned
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Let Ri be indicator for ith hat 
being returned to its owner 
Then E[# hats returned] =

 E[�i Ri]                = �i E[Ri] =
�i Pr{Ri=1} = �i 1/n =

   n(1/n) = 1
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Expected #hats returned
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Expectation & Independence 

for independent R,S

E[R S] = E[R] E[S]
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Team Problems 

Problems
1 � 4
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