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Solutions to In-Class Problems Week 13, Mon. 

Problem 1. 
Suppose there is a system with n components, and we know from past experience that any partic­
ular component will fail in a given year with probability p. That is, letting Fi be the event that the 
ith component fails within one year, we have 

Pr {Fi} = p 

for 1 ≤ i ≤ n. The system will fail if any one of its components fails. What can we say about the 
probability that the system will fail within one year? 

Let F be the event that the system fails within one year. Without any additional assumptions, 
we can’t get an exact answer for Pr {F }. However, we can give useful upper and lower bounds, 
namely, 

p ≤ Pr {F } ≤ np. (1) 

We may as well assume p < 1/n, since the upper bound is trivial otherwise. For example, if 
n = 100 and p = 10−5, we conclude that there is at most one chance in 1000 of system failure 
within a year and at least one chance in 100,000. 

Let’s model this situation with the sample space S ::=P({1, . . . , n}) whose outcomes are subsets of 
positive integers ≤ n, where s ∈ S corresponds to the indices of exactly those components that fail 
within one year. For example, {2, 5} is the outcome that the second and fifth components failed 
within a year and none of the other components failed. So the outcome that the system did not 
fail corresponds to the emptyset, ∅. 

(a) Show that the probability that the system fails could be as small as p by describing appropriate 
probabilities for the outcomes. Make sure to verify that the sum of your outcome probabilities is 
1. 

Solution. There could be a probability p of system failure if all the individual failures occur to­
gether. That is, let Pr {{1, . . . , n}} ::=p, Pr {∅} ::=1−p, and let the probability of all other outcomes 
be zero. So Fi = {s ∈ S | i ∈ s} and Pr {Fi} = 0+0+· · ·+0+Pr {{1, . . . , n}} = Pr {{1, . . . , n}} = p. 
Also, the only outcome with positive probability in F is {1, . . . , n}, so Pr {F } = p, as required. � 

(b) Show that the probability that the system fails could actually be as large as np by describing 
appropriate probabilities for the outcomes. Make sure to verify that the sum of your outcome 
probabilities is 1. 
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Solution. Suppose at most one component ever fails at a time. That is, Pr {{i}} = p for 1 ≤ i ≤ n, 
Pr {∅} = 1 − np, and probability of all other outcomes is zero. The sum of the probabilities of all 
the outcomes is one, so this is a well-defined probability space. Also, the only outcome in Fi with 
positive probability is {i}, so Pr {Fi} = = p as required. Finally, Pr {F } = np becausePr {{i}}
F = {A ⊆ {1, . . . , n} | A =� ∅}, so F in particular contains all the n outcomes of the form {i}. � 

(c) Prove inequality (1). 

Solution. F = 
� n 

i=1 Fi so 

p = Pr {F1} (given) (2) 
≤ Pr {F } (since F1 ⊆ F ) (3)�

 � 
= Pr Fi (def. of F ) (4) 

n� 
≤ Pr {Fi} (Union Bound) (5) 

i=1 

= np. (since the Fi’s are disjoint) (6) 

(d) Describe probabilities for the outcomes so that the component failures are mutually indepen­
dent. 

Solution. 
Pr {s} ::= p|s|(1 − p)n−|s| 

Guess the Bigger Number Game 

Team 1: 

• Write different integers between 0 and 7 on two pieces of paper. 

• Put the papers face down on a table. 

Team 2: 

• Turn over one paper and look at the number on it. 

• Either stick with this number or switch to the unseen other number. 

Team 2 wins if it chooses the larger number. 
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Problem 2. 
In section 20.2.3, Team 2 was shown to have a strategy that wins 4/7 of the time no matter how 
Team 1 plays. Can Team 2 do better? The answer is “no,” because Team 1 has a strategy that 
guarantees that it wins at least 3/7 of the time, no matter how Team 2 plays. Describe such a 
strategy for Team 1 and explain why it works. 

Solution. Team 1 should randomly choose a number Z ∈ {0, . . . , 6} and write Z and Z + 1 on the 
pieces of paper with all numbers equally likely. 

To see why this works, let N be the number on the paper that Team 2 turns over, and let OK be the 
event that N ∈ {1, . . . , 6}. So given event OK, that is, given that N ∈ {1, . . . , 6}, Team 1’s strategy 
ensures that half the time N is the higher number and half the time N is the lower number. So 
given event OK, the probability that Team 1 wins is exactly 1/2 no matter how Team 2 chooses to play 
(stick or switch). 

Now we claim that 
6

Pr {OK} = , (7)
7

which implies that the probability that Team 1 wins is indeed at least (1/2)(6/7) = 3/7. 

To prove Pr {OK} = 6/7, we can follow the four step method. (Note that we couldn’t apply this 
method to model the behavior of Team 2, since we don’t know how they may play, and so we 
can’t let our analysis depend on what they do.) 

The first level of the probability tree for this game will describe the value of Z: there are seven 
branches from the root with equal probability going to first level nodes corresponding to the seven 
possible values of Z. The second level of the tree describes the choice of the number, N : each of 
the seven first-level nodes has two branches with equal probability, one branch for the case that 
N = Z and the other for the case that N = Z + 1. So there are 14 outcome (leaf) nodes at the 
second level of the tree, each with probability 1/14. 

http://courses.csail.mit.edu/6.042/spring10/mcs.pdf#subsection.20.2.3
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Now only two outcomes are not OK, namely, when Z = 6 and N = 7, and when Z = 0 and N = 0. 
Each of the other twelve outcomes is OK, and since each has probability 1/14, we conclude that 
Pr {OK} = 12/14 = 6/7, as claimed. � 

Problem 3. 
Suppose X1, X2, and X3 are three mutually independent random variables, each having the uni­
form distribution 

Pr {Xi = k} equal to 1/3 for each of k = 1, 2, 3. 

Let M be another random variable giving the maximum of these three random variables. What is 
the density function of M? 

Solution. 

PDFM (1) 
PDFM (2) 
PDFM (3) 

= 

= 

= 

1 
27 
7 
27 
19 
27 

This can be hashed out by counting the possible outcomes. Alternatively, we can reason as follows: 

The event M = 1 is the event that all three of the variables equal 1, and since they are mutually 
independent, we have � �31 1

Pr {M = 1} = Pr {X1 = 1} · Pr {X2 = 1} · Pr {X3 = 1} = = .
3 27

To compute Pr {M = 2}, we first compute Pr {M ≤ 2}. Now the event [M ≤ 2] is the event that 
all three of the variables is at most 2, so by mutual independence we have � �32 8

Pr {M ≤ 2} = Pr {X1 ≤ 2} · Pr {X2 ≤ 2} · Pr {X3 ≤ 2} = 
3 

=
27

. 

Therefore, 
8 1 7

Pr {M = 2} = Pr {M ≤ 2} − Pr {M = 1} = 
27 
− 

27 
= 

27
. 

Finally, 
8 19

Pr {M = 3} = 1 − Pr {M ≤ 2} = 1 − = .
27 27
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Problem 4. 
Suppose you have a biased coin that has probability p of flipping heads. Let J be the number of 
heads in n independent coin flips. So J has the general binomial distribution: 

n
PDFJ (k) = p k q n−k 

k 

where q ::= 1 − p. 

(a) Show that 

PDFJ (k) < PDFJ (k + 1) for k < np + p, 

PDFJ (k) > PDFJ (k + 1) for k > np + p. 

Solution. Consider the ratio of the probability of k heads over the probability of k − 1 heads. 

PDFJ (k) n
k pkqn−k 

n k−1qn−k+1PDFJ (k − 1) 
k−1 p

n! 

= 
k! (n−k)! p 

n! 
(k−1)! (n−k+1)! 

q 

(n − k + 1)p
= 

kq 

This fraction is greater than 1 precisely when (n − k +1)p > kq = k(1 − p), that is when k < np + p. 
So for k < np + p, the probability of k heads increases as k increases, and for k > np + p, the 
probability decreases as k increases. � 

(b) Conclude that the maximum value of PDFJ is asymptotically equal to 

1 
.√

2πnpq 

Hint: For the asymptotic estimate, it’s ok to assume that np is an integer, so by part (a) the maxi­
mum value is PDFJ (np). Use Stirling’s formula 15.121. 

1 n n! ∼ 
` ´ n √

2πn 
e 

http://courses.csail.mit.edu/6.042/spring10/mcs.pdf#equation.15.12
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Solution. 

n
PDFJ (np) ::= pnpq n−np 

np 
n! 

= pnpqnq 

(np)! (nq)!
n n √2πn �� np � e � �� nq � �pnpqnq∼ 

e 
np √2πnp e 

nq √2πnq 
nn
√

2πn 
= � nnppnp 

en � � nnq qnq �pnpqnq 

enp 

√
2πnp enq 

√
2πnq 

nn
√

2πn 
= en 

pnpqnqpnpqnq 
nnp+nq pnpqnq 

enp+nq 

√
2πnp

√
2πnq 

nn
√

2πn 
= en 

nn √2πnp
√

2πnq en 

1 
= √

2πnpq 
. 



MIT OpenCourseWare
http://ocw.mit.edu 

6.042J / 18.062J Mathematics for Computer Science 
Spring 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Problem 1
	Problem 2
	Problem 3
	Problem 4

