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Solutions to In-Class Problems Week 12, Mon. 

Problem 1. 
The famous mathematician, Fibonacci, has decided to start a rabbit farm to fill up his time while 
he’s not making new sequences to torment future college students. Fibonacci starts his farm on 
month zero (being a mathematician), and at the start of month one he receives his first pair of 
rabbits. Each pair of rabbits takes a month to mature, and after that breeds to produce one new 
pair of rabbits each month. Fibonacci decides that in order never to run out of rabbits or money, 
every time a batch of new rabbits is born, he’ll sell a number of newborn pairs equal to the total 
number of pairs he had three months earlier. Fibonacci is convinced that this way he’ll never run 
out of stock. 

(a) Define the number, rn, of pairs of rabbits Fibonacci has in month n, using a recurrence rela­
tion. That is, define rn in terms of various ri where i < n. 

Solution. According to the description above, r0 = 0 and r1 = 1. Since the rabbit pair received at 
the first month is too young to breed, r2 = 1 as well. After that, rn is equal to the number, rn−1, 
of rabbit pairs in the previous month, plus the number of newborn pairs, minus the number, rn−3, 
he sells. The number of newborn pairs equals to the number of breeding pairs from the previous 
month, which is precisely the total number, rn−2, of pairs from two months before. 

Thus, 
rn = rn−1 + (rn−2 − rn−3). 

(b) Let R(x) be the generating function for rabbit pairs, 

R(x) ::= r0 + r1x + r2x 2 + ·. 

Express R(x) as a quotient of polynomials. 

Solution. Reasoning as in the derivation of the generating function for the orginal Fibonacci num­
bers, we have 

R(x) = r0 + r1x + r2x
2 + r3x

3 + r4x
4 + · · · . 

−xR(x) = − r0x − r1x
2

2 − r2x
3

3 − r3x
4

4 − · · · . 
−x2R(x) = − r0x − r1x − r2x − · · · . 

x3R(x) = + r0x
3 + r1x

4 + · · · . 
R(x)(1 − x − x2 + x3) = r0 + (r1 − r0)x + (r2 − r1 − r0)x2 + 0x3 + 0x4 + · · · . 

= 0 + 1x + 0x2 . 

Creative Commons 2010, Prof. Albert R. Meyer. 

http://web.mit.edu/
http://courses.csail.mit.edu/6.042/spring10
http://people.csail.mit.edu/meyer
http://people.csail.mit.edu/meyer


� 

� 

2 Solutions to In-Class Problems Week 12, Mon. 

so 
x x 

R(x) = = . (1)
1 − x − x2 + x3 (1 + x)(1 − x)2 

(c) Find a partial fraction decomposition of the generating function R(x). 

Solution. We know 
A B C 

R(x) = + +
1 + x 1 − x (1 − x)2 

for some numbers A, B,C. Multiplying both sides of this equation by (1 + x)(1 − x)2 gives 

x = A(1 − x)2 + B(1 + x)(1 − x) + C(1 + x). 

Letting x = 1 gives C = 1/2, letting x = −1 gives A = −1/4, and letting x = 0 then gives 
B = −(A + C) = −1/4. � 

(d) Finally, use the partial fraction decomposition to come up with a closed form expression for 
the number of pairs of rabbits Fibonacci has on his farm on month n. 

Solution. We find the coefficient as the sum of the coefficients for each term in the partial fraction 
expansion. 

A/(1 + x) = − 1/4 − (1/4)(−x) − (1/4)(−x)2 − · · · − (1/4)(−x)n − · · · 
B/(1 − x) = − 1/4 − (1/4)x − (1/4)x2

2 
− · · · − (1/4)xn − · · · 

C/(1 − x)2 = 1/2 + (2/2)x + (3/2)x + + ((n + 1)/2)xn +· · · � � · · · 
2 n+1 (−1)n+1R(x) = 1x + 1x + · · · + 2 − 4 xn + · · · 

so � � n 
rn = .

2 

Problem 2. 
Less well-known than the Towers of Hanoi —but no less fascinating —are the Towers of Sheboy­
gan. As in Hanoi, the puzzle in Sheboygan involves 3 posts and n disks of different sizes. Initially, 
all the disks are on post #1: 

Post #1 Post #2 Post #3
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The objective is to transfer all n disks to post #2 via a sequence of moves. A move consists of 
removing the top disk from one post and dropping it onto another post with the restriction that a 
larger disk can never lie above a smaller disk. Furthermore, a local ordinance requires that a disk 
can be moved only from a post to the next post on its right —or from post #3 to post #1. Thus, for example, 
moving a disk directly from post #1 to post #3 is not permitted. 

(a) One procedure that solves the Sheboygan puzzle is defined recursively: to move an initial 
stack of n disks to the next post, move the top stack of n − 1 disks to the furthest post by moving 
it to the next post two times, then move the big, nth disk to the next post, and finally move the 
top stack another two times to land on top of the big disk. Let sn be the number of moves that this 
procedure uses. Write a simple linear recurrence for sn. 

Solution. 

s0 = 0,


sn = 2sn−1 + 1 + 2sn−1 = 4sn−1 + 1 for n > 0. (2)


(b) Let S(x) be the generating function for the sequence �s0, s1, s2, . . . �. Show that S(x) is a quo­
tient of polynomials. 

Solution. 

S(x) = s0 + s1x + s2x
2 + s3x

3 + · · · . 
−4xS(x) = − 4s0x − 4s1x

2

2 − 4s2x
3

3 − · · · . 
−1/(1 − x) = −1 − 1x − 1x − 1x − · · · . 

S(x)(1 − 4x) − 1−
1 
x = −1 + 0x + 0x2 + 0x3 + · · · . 

= −1. 

so 
1 

S(x)(1 − 4x) − 
1 − x 

= −1, 

and 
x 

S(x) = .
(1 − x)(1 − 4x) 

(c) Give a simple formula for sn. 

Solution. We can express x/(1 − x)(1 − 4x) using partial fractions as 

x a b 
(1 − x)(1 − 4x)

=
1 − x 

+
1 − 4x 

(3) 

for some constants a, b. Multiplying both sides of (3) by the left hand denominator yields 

x = a(1 − 4x) + b(1 − x). (4) 
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Letting x = 1 yields a = −1/3 and letting x = 1/4 yields b = 1/3. Now from (3), we have 

S(x) = 
−1/3

+ 
1/3 

1 − x 1 − 4x 

so 

sn = −
3
1 

+ 
3
1
4n =

4n 

3
− 1 

. 

(d) A better (indeed optimal, but we won’t prove this) procedure to solve the Towers of Sheboy­
gan puzzle can be defined in terms of two mutually recursive procedures, procedure P1(n) for 
moving a stack of n disks 1 pole forward, and P2(n) for moving a stack of n disks 2 poles forward. 
This is trivial for n = 0. For n > 0, define: 

P1(n): Apply P2(n−1) to move the top n−1 disks two poles forward to the third pole. Then move 
the remaining big disk once to land on the second pole. Then apply P2(n − 1) again to move the 
stack of n − 1 disks two poles forward from the third pole to land on top of the big disk. 

P2(n): Apply P2(n − 1) to move the top n − 1 disks two poles forward to land on the third pole. 
Then move the remaining big disk to the second pole. Then apply P1(n − 1) to move the stack of 
n−1 disks one pole forward to land on the first pole. Now move the big disk 1 pole forward again 
to land on the third pole. Finally, apply P2(n − 1) again to move the stack of n − 1 disks two poles 
forward to land on the big disk. 

Let tn be the number of moves needed to solve the Sheboygan puzzle using procedure P1(n). 
Show that 

tn = 2tn−1 + 2tn−2 + 3, (5) 

for n > 1. 

Hint: Let sn be the number of moves used by procedure P2(n). Express each of tn and sn as linear 
combinations of tn−1 and sn−1 and solve for tn. 

Solution. From the definitions of procedures P1 and P2 we have 

t0 = 0, 

s0 = 0, 

tn = sn−1 + 1 + sn−1 for n > 0, (6) 
sn = sn−1 + 1 + tn−1 + 1 + sn−1 for n > 0. (7) 

Using (6) to get sn−1 = (tn − 1)/2 and then expressing s’s in (7) in terms of t’s, we conclude that 
for n > 0, 

tn+1 − 1 
= (tn − 1) + tn−1 + 2 

2 
so 

tn+1 = 2tn + 2tn−1 + 3, 

which is the same as the given recurrence (5) with n + 1 replacing n. �
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(e) Derive values a, b, c, α, β such that 

tn = aαn + bβn + c. 

Conclude that tn = o(sn). 

Solution. 
(1 + 

√
3)n (1 −

√
3)n 

tn =
3 −

√
3 

+ 
3 + 

√
3 

− 1. (8) 

In particular, we conclude that tn = Θ((1 + 
√

3)n). Since sn = Θ(4n), this implies that tn = o(sn). 
So the second procedure for moving a stack of n disks is significantly more efficient than the first 
one. 

The derivation of (8) is similar to the one for sn: 

T (x) = t0 + t1x + t2x
2 + t3x

3 + · · · .

−2xT (x) = − 2t0x − 2t1x

2

2 
− 2t2x

3

3 
− · · · .


−2x2T (x) = − 2t0x
2 
− 2t1x

3 
− · · · .


−3/(1 − x) = −3 − 3x − 3x − 3x − · · · .

T (x)(1 − 2x − 2x2) − 1−

3 
x = t0 − 3 + (t1 − 2t0 − 3) x + 0x2 + 0x3 + · · ·


= −3 + (−2)x. 

so 
3 

T (x)(1 − 2x − 2x 2) = 
1 − x 

− 3 − 2x 

2x2 + x 
= ,

1 − x 

and 
2x2 + x 2x2 + x 

T (x) = 
(1 − x)(1 − 2x − 2x2) 

= 
(1 − x)(1 − αx)(1 − βx) 

(9) 

where α = 1 + 
√

3, β = 1 −
√

3. This implies that T (x) can be expressed using partial fractions as 

a b c 
T (x) = + + (10)

1 − αx 1 − βx 1 − x 

To find a, b, c, multiply both sides of (10) by (1 − αx)(1 − βx)(1 − x) to get 

2x 2 + x = a(1 − βx)(1 − x) + b(1 − αx)(1 − x) + c(1 − αx)(1 − βx). (11) 

Letting x = 1 gives 
3 = c(1 − α)(1 − β) = c(−3) 

so c = −1. Similarly, letting x = 1/α gives (after a little calculation) a = 1/(3 −
√

3), and letting 
x = 1/β gives b = 1/(3 + 

√
3). 

Finally, since 
[x n] (d/(1 − δx)) = dδn , 

we conclude that 

tn = aαn + bβn + c1n 

=
3 − 

1 √
3
(1 + 

√
3)n + 

3 + 

1 √
3
(1 −

√
3)n − 1 
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Appendix 

Let [xn]F (x) denote the coefficient of xn in the power series for F (x). Then, 

[x n]
1 

= 
n + k − 1 

αn . (12)
(1 − αx)k k − 1 

Partial Fractions 

Here’s a particular case of the Partial Fraction Rule that should be enough to illustrate the general 
Rule. Let 

p(x) 
r(x) ::= 

(1 − αx)2(1 − βx)(1 − γx)3 

where α, β, γ are distinct complex numbers, and p(x) is a polynomial of degree less than the de­
moninator, namely, less than 6. Then there are unique numbers a1, a2, b, c1, c2, c3 ∈ C such that 

r(x) = 
a1 + 

a2 + 
b 

+ 
c1 + 

c2 + 
c3 

1 − αx (1 − αx)2 1 − βx 1 − γx (1 − γx)2 (1 − γx)3 

Finding a Generating Function for Fibonacci Numbers 

The Fibonacci numbers are defined by: 

f0 ::= 0 

f1 ::= 1 

fn ::= fn−1 + fn−2 (for n ≥ 2) 

Let F be the generating function for the Fibonacci numbers, that is, 

F (x) ::= f0 + f1x + f2x 2 + f3x 3 + · · · 

Now we have 

F (x) = f0 + f1x + f2x
2 + f3x

3 + · · · . 
−xF (x) = f0x f1x

2 f2x
3 

−x2F (x) = 
− − 

f0x
2 
− 

f1x
3 
− · · · . 

− 
2 
− 

3 
− · · · . 

F (x)(1 − x − x2) = f0 + (f1 − f0)x + 0x + 0x + · · · . 
= 0 + 1x. 

so 
x 

F (x) = .
1 − x − x2 
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