

The Rabbit Population

$$b_n = b_{n-1} + b_{n-2}$$
It was Fibonacci who was
studying rabbit population
growth!

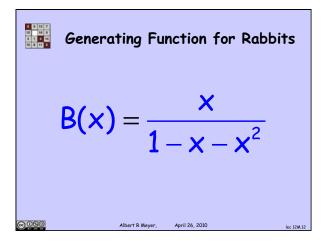
Generating Function for Rabbits

$$B(x) ::= b_{0} + b_{1}x + b_{2}x^{2} + b_{3}x^{3} + \cdots \\ -xB(x) = -b_{0}x - b_{1}x^{2} - b_{2}x^{3} - \cdots \\ -x^{2}B(x) = -b_{0}x^{2} - b_{1}x^{3} - \cdots \\ 0x^{2} + 0x^{3} + \cdots \\ b_{n} - b_{n-1} - b_{n-2} = 0$$
We let Refer. April 26, 200

Generating Function for Rabbits

$$B(x) = b_0 + b_1 x$$

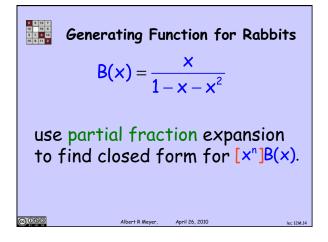
 $-xB(x) - b_0 x$
 $-x^2B(x)$
 $B(x) - xB(x) - x^2B(x) = b_0 + (b_1 - b_0)x$
 $B(x)(1 - x - x^2) = 0 + (1 - 0)x = x$



Coefficient notation

$$[x^{n}]B(x) ::= b_{n} = coeff of x^{n} in power series for B(x)$$

$$[x^{n}] \frac{1}{(1 - \alpha x)} = \alpha^{n}$$
Where April 26, 200 Here the constants of the series of the s



Closed Form for [xⁿ]B(x)

$$B(x) = \frac{x}{1 - x - x^{2}}$$
factor the denominator

$$1 - x - x^{2} = (1 - \alpha x)(1 - \beta x)$$
use quadratic formula

Closed Form for [xⁿ]B(x)

$$B(x) = \frac{x}{1 - x - x^{2}}$$
factor the denominator

$$1 - x - x^{2} = (1 - \alpha x)(1 - \beta x)$$

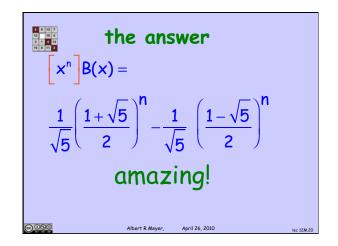
$$\alpha = \frac{1 + \sqrt{5}}{2}, \quad \beta = \frac{1 - \sqrt{5}}{2}$$

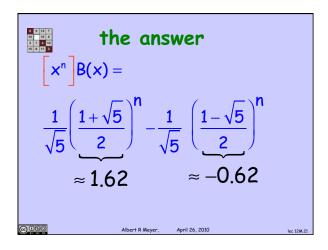
Closed Form for
$$[x^n]B(x)$$

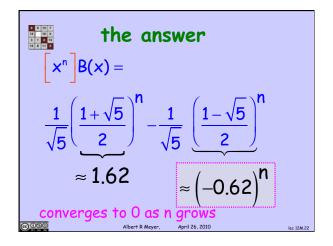
$$B(x) = \frac{a}{1 - \alpha x} + \frac{b}{1 - \beta x}$$

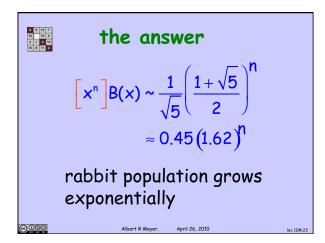
$$[x^n]B(x) = a \cdot \alpha^n + b \cdot \beta^n$$
need to solve for a and b

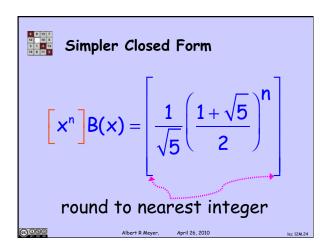
Closed Form for [xⁿ]B(x) $\frac{a}{1-\alpha x} + \frac{b}{1-\beta x} = \frac{x}{(1-\alpha x)(1-\beta x)}$ Multiply both sides by $(1-\alpha x)(1-\beta x)$ $a(1-\beta x)+b(1-\alpha x)=x$ Solve for a and b —letting x be $1/\alpha$, then $1/\beta$ makes it easy April 26, 2010

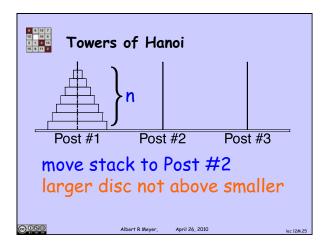


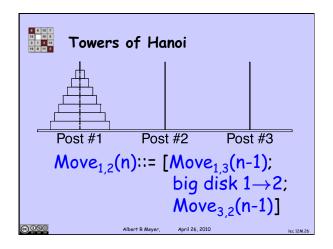


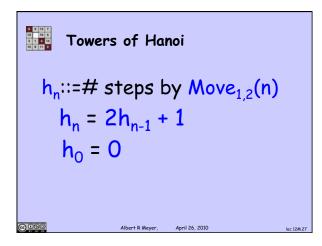












Hanoi Generating Function

$$h_n = 2h_{n-1} + 1$$

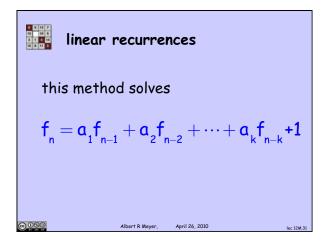
 $h_0 = 0$
 $H(x) = h_0 + h_1 x + h_2 x^2 + \cdots$
 $-2xH(x) = -2h_0 x - 2h_1 x^2 - \cdots$
 $-1/(1-x) = -1 - 1x - 1x^2 - \cdots$
 $H(x) - 2xH(x) - 1/(1-x) = h_0 - 1 = -1$

Hanoi Generating Function

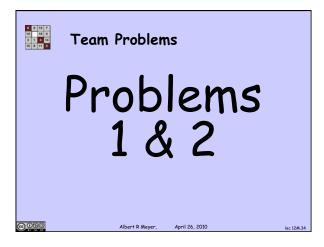
$$H(x)(1-2x) = x/(1-x)$$

$$H(x) = \frac{x}{(1-x)(1-2x)}$$
(The gen func from last lecture)

Hanoi Generating Function
by partial fractions
from last lecture
$$\begin{bmatrix} x^n \end{bmatrix} H(x) = 2^n - 1$$



nonhomogeneous terms	
handle	with
···+ 1	1/(1-x)
···+ 2 ⁿ	1/(1-2x)
· · · + n	x/(1-x) ²
··· + n ²	x(1+x)/(1-x) ³
···+ $\mathbf{\alpha}^{n} \cdot \mathbf{n}^{k}$	P(x)/Q(x)
Albert R Meyer,	April 26, 2010 lec 12M.32



6.042J / 18.062J Mathematics for Computer Science Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.