\blacksquare

�

Solutions to In-Class Problems Week 11, Wed.

Problem 1.

Find the coefficients of

(a) x^5 in $(1+x)^{11}$

Solution.

$$
\binom{11}{5} = 462
$$

(b) x^8y^9 in $(3x + 2y)^{17}$

Solution.

$$
\binom{17}{8}3^82^9.
$$

When $(3x + 2)$ $\overline{(\ }$ $y)$ \mathcal{L} ¹⁷ is expressed as a sum of powers of the summands $3x$ and $2y$, the coefficient of $(3x)^8(2y)^9$ is $\binom{17}{8}$, so the coefficient of x^8y^9 is this binomial coefficient times $3^8 \cdot 2^9$.

(c)
$$
a^6b^6
$$
 in $(a^2 + b^3)^5$

Solution. $a^6b^6 = (a^2)^3(b^3)^2$, so the coefficient is

$$
\binom{5}{3} = 10
$$

Problem 2.

You want to choose a team of m people for your startup company from a pool of n applicants, and from these m people you want to choose k to be the team managers. You took 6.042, so you know you can do this in

$$
\binom{n}{m}\binom{m}{k}
$$

ways. But your CFO, who went to Harvard Business School, comes up with the formula

$$
\binom{n}{k}\binom{n-k}{m-k}.
$$

Before doing the reasonable thing —dump on your CFO or Harvard Business School —you decide to check his answer against yours.

Creative Commons \bigcirc 2010, [Prof. Albert R. Meyer.](http://people.csail.mit.edu/meyer)

�

(a) Give a *combinatorial proof* that your CFO's formula agrees with yours.

the remaining $n - k$ people. This gives you $\binom{n}{k} \binom{n - k}{n - k}$ **Solution.** Instead of choosing first m from n and then k from the chosen m , you could alternately choose the k managers from the n people and then choose $m - k$ people to fill out the team from $\binom{m}{k} \binom{m-k}{m-k}$ ways of picking your team. Since you must have the same number of options regardless of the order in which you choose to pick team members and managers,

$$
\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n-k}{m-k}.
$$

Formally, in the first method we count the number of pairs (A, B) , where A is a size m subset of the pool of *n* applicants, and *B* is a size k subset of A . By the Generalized Product Rule, there are

$$
\binom{n}{m} \cdot \binom{m}{k}
$$

such pairs.

In the second method, we count pairs (C, D) , where C is a size k subset of the applicant pool, and D is a size $(m - k)$ subset of the pool that is disjoint from C. By the Generalized Product Rule, there are

$$
\binom{n}{k} \cdot \binom{n-k}{m-k}
$$

such pairs.

These two expressions are equal because there is an obvious bijection between the two kinds of pairs, namely map (A, B) to $(B, A - B)$.

(b) Verify this combinatorial proof by giving an *algebraic* proof of this same fact.

Solution.

$$
\binom{n}{m}\binom{m}{k} = \frac{n!}{m!(n-m)!} \frac{m!}{k!(m-k)!}
$$

=
$$
\frac{n!}{(n-m)!k!(m-k)!}
$$

=
$$
\frac{n!(n-k)!}{(n-m)!k!(m-k)!(n-k)!}
$$

=
$$
\frac{n!}{k!(n-k)!} \frac{(n-k)!}{(n-m)!(m-k)!}
$$

=
$$
\frac{n!}{k!(n-k)!} \frac{(n-k)!}{((n-k)-(m-k))!(m-k)!}
$$

=
$$
\binom{n}{k}\binom{n-k}{m-k}.
$$

Solutions to In-Class Problems Week 11, Wed. $\frac{3}{3}$

Problem 3. (a) Now give a combinatorial proof of the following, more interesting theorem:

$$
n2^{n-1} = \sum_{k=1}^{n} k \binom{n}{k} \tag{1}
$$

Hint: Let *S* be the set of all length-*n* sequences of 0's, 1's and a single $*$.

Solution. Let $P ::= \{0, \ldots, n-1\} \times \{0,1\}^{n-1}$. On the one hand, there is a bijection from P to S by mapping (k, x) to the word obtained by inserting a * just after the kth bit in the length-n – 1 binary word, x. So

$$
|S| = |P| = n2^{n-1}
$$
 (2)

by the Product Rule.

entries is a bijection, and the number of such pairs is $\binom{n}{k} k$ by the Generalized Product Rule. Thus, On the other hand, every sequence in S contains between 1 and n nonzero entries since the \ast , at least, is nonzero. The mapping from a sequence in S with exactly k nonzero entries to a pair consisting of the set of positions of the nonzero entries and the position of the * among these by the Sum Rule:

$$
|S| = \sum_{k=1}^{n} k \binom{n}{k}
$$

Equating this expression and the expression [\(2\)](#page-2-0) for $|S|$ proves the theorem.

(b) Now prove [\(1\)](#page-2-1) algebraically by applying the Binomial Theorem to $(1+x)^n$ and taking derivatives.

Solution. By the Binomial Theorem

$$
(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.
$$

Taking derivatives, we get

$$
n(1+x)^{n-1} = \sum_{k=0}^{n} k \binom{n}{k} x^{k-1}
$$

$$
= \frac{1}{x} \sum_{k=0}^{n} k \binom{n}{k} x^{k}.
$$
(3)

Letting $x = 1$ in [\(3\)](#page-2-2) yields [\(1\)](#page-2-1).

 \blacksquare

6.042J / 18.062J Mathematics for Computer Science Spring 2010

For information about citing these materials or our Terms of Use, visit:<http://ocw.mit.edu/terms>.