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Binomial Theorem, 
Combinatorial Proof
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Polynomials Express Choices & Outcomes 

Products of Sums = Sums of Products 
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expression for ck?
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multiplying gives 2n product terms: 
11�1 + X11X�X1 + 1XX�1X1 +�+ XX�X

a term corresponds to selecting 1 or X
from each of the n factors 

n times

expression for ck?
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the Xk coeff, ck,  is # terms 
with exactly k X’s selected 

n times

expression for ck?
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The Binomial Formula 

binomial coefficients 

binomial
expression 
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The Binomial Formula 
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The Binomial Formula 
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What is the coefficient of  

in the expansion of 

(X1+X2+X3+…+Xk)
n ?

multinomial coefficients 
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The Multinomial Formula 

X
1
+X

2
+...+ X

k( )
n
=

n
r
1
,r

2
,...,r

k

�

�
�
�

�

�
�
�

r
1

+�+r
k
=n

� X
1

r1X
2

r2X
3

r3 ...X
k

rk

Albert R Meyer,                April 21, 2010 

n
k

�

�
�

�

�
� = n

k, n -k

�

�
�

�

�
�

binomial a special case:

multinomial coefficients 
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More next lecture 
about counting with 
polynomials and series 
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Preceding slides adapted from: 

•� Great Theoretical Ideas In Computer Science 

      Carnegie Mellon Univ., CS 15-251, Spring 2004 

       Lecture 10 Feb 12, 2004 by Steven Rudich

•� Applied Combinatorics, by Alan Tucker 
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Pascal’s Identity 

Algebraic Proof : routine, using 
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classify subsets of {1,…,n}

# size k subsets =
# size k subsets with 1
+ # size k subsets without 1

Combinatorial Proof
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classify subsets of {1,…,n}

Combinatorial Proof
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classify subsets of {1,…,n}
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Combinatorial Proof
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classify subsets of {1,…,n}
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Combinatorial Proof

QED
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Combinatorial Proof, II 
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RHS =
2n
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classify subsets of {1,…,n,1,….,n}

Combinatorial Proof, II 
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Combinatorial Proof, II 
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Combinatorial Proof, II 
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Combinatorial Proof, II 
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So LHS = # size n subsets 
of  {1,…,n,1,….,n} by Sum Rule

Combinatorial Proof, II 
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Therefore
LHS = # size n subsets = RHS 
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Combinatorial Proof, II 

QED
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Team Problems 

Problems
1 3
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