Solutions to In-Class Problems Week 9, Wed.

Problem 1.

Recall that for functions f, g on $\mathbb{N}, f = O(g)$ iff

$$
\exists c \in \mathbb{N} \, \exists n_0 \in \mathbb{N} \, \forall n \ge n_0 \quad c \cdot g(n) \ge |f(n)|. \tag{1}
$$

For each pair of functions below, determine whether $f = O(g)$ and whether $g = O(f)$. In cases where one function is O() of the other, indicate the *smallest nonegative integer*, c, and for that smallest c, the *smallest corresponding nonegative integer* n_0 ensuring that condition [\(1\)](#page-0-0) applies.

(a) $f(n) = n^2, g(n) = 3n$. $f = O(g)$ YES NO If YES, $c = \underline{\hspace{1cm}} n_0 =$

Solution. NO.

 $g = O(f)$ YES NO If YES, $c = \underline{\hspace{1cm}} n_0 =$

Solution. YES, with $c = 1$, $n_0 = 3$, which works because $3^2 = 9$, $3 \cdot 3 = 9$.

(b) $f(n) = (3n - 7)/(n + 4), g(n) = 4$ $f = O(g)$ YES NO If YES, $c = \underline{\hspace{1cm}}$ $n_0 = \underline{\hspace{1cm}}$

Solution. YES, with $c = 1$, $n_0 = 0$ (because $|f(n)| < 3$).

 $g = O(f)$ YES NO If YES, $c = \underline{\hspace{1cm}}$ $n_0 = \underline{\hspace{1cm}}$

Solution. YES, with $c = 2$, $n_0 = 15$.

Since $\lim_{n\to\infty} f(n) = 3$, the smallest possible c is 2. For $c = 2$, the smallest possible $n_0 = 15$ which follows from the requirement that $2f(n_0) \geq 4$.

(c)
$$
f(n) = 1 + (n \sin(n\pi/2))^2
$$
, $g(n) = 3n$
\n $f = O(g)$
\nYES NO If yes, $c =$ _______ $n_0 =$ _______

Solution. NO, because $f(2n) = 1$, which rules out $g = O(f)$ since $g = \Theta(n)$.

 $g = O(f)$ YES NO If yes, $c = n_0 =$

Solution. NO, because $f(2n + 1) = n^2 + 1 \neq O(n)$ which rules out $f = O(g)$.

Creative Commons 2010, [Prof. Albert R. Meyer.](http://people.csail.mit.edu/meyer)

Problem 2.

(a) Define a function $f(n)$ such that $f = \Theta(n^2)$ and NOT $(f \sim n^2)$.

Solution. Let $f(n) ::= 2n^2$.

(b) Define a function $g(n)$ such that $g = O(n^2)$, $g \neq \Theta(n^2)$ and $g \neq o(n^2)$.

Solution. Let $g(n) ::= (n \sin(n\pi/2))^2 + n (\cos(n\pi/2))^2$. For odd *n*, we have $g(n) = n^2$, which implies that $g \neq o(n^2)$. For even *n*, we have $g(n) = n$, which implies $n^2 \neq O(g)$ and hence $g \neq \Theta(n^2)$.

Problem 3.

False Claim.

$$
2^n = O(1). \tag{2}
$$

Explain why the claim is false. Then identify and explain the mistake in the following bogus proof.

Bogus proof. The proof by induction on *n* where the induction hypothesis, $P(n)$, is the assertion [\(2\)](#page-1-0). **base case:** P(0) holds trivially.

inductive step: We may assume $P(n)$, so there is a constant $c > 0$ such that $2^n \leq c \cdot 1$. Therefore,

$$
2^{n+1} = 2 \cdot 2^n \le (2c) \cdot 1,
$$

which implies that $2^{n+1} = O(1)$. That is, $P(n+1)$ holds, which completes the proof of the inductive step.

We conclude by induction that $2^n = O(1)$ for all n. That is, the exponential function is bounded by a constant.

Solution. A function is $O(1)$ iff it is bounded by a constant, and since the function 2^n grows unboundedly with *n*, it is not $O(1)$.

The mistake in the bogus proof is in its misinterpretation of the expression 2^n in assertion [\(2\)](#page-1-0). The intended interpration of [\(2\)](#page-1-0) is

Let *f* be the function defined by the rule
$$
f(n) ::= 2^n
$$
. Then $f = O(1)$. (3)

But the bogus proof treats [\(2\)](#page-1-0) as an assertion, $P(n)$, about n. Namely, it misinterprets (2) as meaning:

 \blacksquare

�

Let f_n be the constant function equal to 2^n . That is, $f_n(k) ::= 2^n$ for all $k \in \mathbb{N}$. Then

$$
f_n = O(1). \tag{4}
$$

Now [\(4\)](#page-2-0) is true since every constant function is $O(1)$, and the bogus proof is an unnecessarily complicated, but *correct*, proof that that for each n , the constant function f_n is $O(1)$. But in the last line, the bogus proof switches from the misinterpretation [\(4\)](#page-2-0) and claims to have proved [\(3\)](#page-1-1).

So you could say that the exact place where the proof goes wrong is in its first line, where it defines $P(n)$ based on misinterpretation [\(4\)](#page-2-0). Alternatively, you could say that the proof was a correct proof (of the misinterpretation), and its first mistake was in its last line, when it switches from the misinterpretation to the proper interpretation (3) .

Problem 4.

Give an elementary proof (without appealing to Stirling's formula) that $\log(n!) = \Theta(n \log n)$.

Solution. One elementary proof goes as follows:

First,
\n
$$
\log(n!) = \sum_{i=1}^{n} \log i < \sum_{i=1}^{n} \log n = n \log n.
$$

On the other hand,

$$
\log(n!) = \sum_{i=1}^{n} \log i > \sum_{i=\lceil (n+1)/2 \rceil}^{n} \log i
$$

\n
$$
> \sum_{i=\lceil (n+1)/2 \rceil}^{n} \log(n/2) > \frac{n}{2} \cdot \log(n/2)
$$

\n
$$
= \frac{n((\log n) - 1)}{2} = \frac{n \log n}{2} - \frac{n}{2}
$$

\n
$$
> \frac{n \log n}{2} - \frac{n \log n}{6}
$$

\n
$$
= \frac{1}{3} \cdot n \log n.
$$

Therefore, $(1/3)n \log n < \log(n!) < n \log n$ for $n > 8$, proving that $\log(n!) = \Theta(n \log n)$.

 \blacksquare

6.042J / 18.062J Mathematics for Computer Science Spring 2010

For information about citing these materials or our Terms of Use, visit:<http://ocw.mit.edu/terms>.