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Solutions to In-Class Problems Week 9, Wed. 

Problem 1. 
Recall that for functions f, g on N, f = O(g) iff 

∃c ∈ N ∃n0 ∈ N ∀n ≥ n0 c · g(n) ≥ |f(n)| . (1) 

For each pair of functions below, determine whether f = O(g) and whether g = O(f). In cases 
where one function is O() of the other, indicate the smallest nonegative integer, c, and for that small­
est c, the smallest corresponding nonegative integer n0 ensuring that condition (1) applies. 

(a) f(n) = n2, g(n) = 3n.


f = O(g) YES NO If YES, c = , n0 =


Solution. NO. �


g = O(f) YES NO If YES, c = , n0 =


Solution. YES, with c = 1, n0 = 3, which works because 32 = 9, 3 3 = 9. �
· 

(b) f(n) = (3n − 7)/(n + 4), g(n) = 4 

f = O(g) YES NO If YES, c = , n0 = 

Solution. YES, with c = 1, n0 = 0 (because |f(n)| < 3). � 

g = O(f) YES NO If YES, c = , n0 = 

Solution. YES, with c = 2, n0 = 15. 

Since limn→∞ f(n) = 3, the smallest possible c is 2. For c = 2, the smallest possible n0 = 15 which 
follows from the requirement that 2f(n0) ≥ 4. � 

(c) f(n) = 1 + (n sin(nπ/2))2, g(n) = 3n 

f = O(g) YES NO If yes, c = n0 = 

Solution. NO, because f(2n) = 1, which rules out g = O(f) since g = Θ(n). � 

g = O(f) YES NO If yes, c = n0 = 

Solution.	 NO, because f(2n + 1) = n2 + 1 �= O(n) which rules out f = O(g). � 
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Problem 2. 

(a) Define a function f(n) such that f = Θ(n2) and NOT(f ∼ n2). 

Solution. Let f(n) ::= 2n2 . � 

(b) Define a function g(n) such that g = O(n2), g �= Θ(n2) and g �= o(n2). 

Solution. Let g(n) ::= (n sin(nπ/2))2 + n (cos(nπ/2))2 . 

For odd n, we have g(n) = n2, which implies that g =� o(n2). For even n, we have g(n) = n, which 
implies n2 =� O(g) and hence g = Θ(� n2). 

Problem 3. 

False Claim. 
2n = O(1). (2) 

Explain why the claim is false. Then identify and explain the mistake in the following bogus proof. 

Bogus proof. The proof by induction on n where the induction hypothesis, P (n), is the assertion (2). 

base case: P (0) holds trivially. 

inductive step: We may assume P (n), so there is a constant c > 0 such that 2n ≤ c 1. Therefore, · 

2n+1 = 2 2n ≤ (2c) 1,· · 

which implies that 2n+1 = O(1). That is, P (n+1) holds, which completes the proof of the inductive 
step. 

We conclude by induction that 2n = O(1) for all n. That is, the exponential function is bounded 
by a constant. 

Solution. A function is O(1) iff it is bounded by a constant, and since the function 2n grows 
unboundedly with n, it is not O(1). 

The mistake in the bogus proof is in its misinterpretation of the expression 2n in assertion (2). The 
intended interpration of (2) is 

Let f be the function defined by the rule f(n) ::= 2n. Then f = O(1). (3) 

But the bogus proof treats (2) as an assertion, P (n), about n. Namely, it misinterprets (2) as mean­
ing: 
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Let fn be the constant function equal to 2n. That is, fn(k) ::= 2n for all k ∈ N. Then 

fn = O(1). (4) 

Now (4) is true since every constant function is O(1), and the bogus proof is an unnecessarily 
complicated, but correct, proof that that for each n, the constant function fn is O(1). But in the last 
line, the bogus proof switches from the misinterpretation (4) and claims to have proved (3). 

So you could say that the exact place where the proof goes wrong is in its first line, where it 
defines P (n) based on misinterpretation (4). Alternatively, you could say that the proof was a 
correct proof (of the misinterpretation), and its first mistake was in its last line, when it switches 
from the misinterpretation to the proper interpretation (3). � 

Problem 4. 
Give an elementary proof (without appealing to Stirling’s formula) that log(n!) = Θ(n log n). 

Solution. One elementary proof goes as follows: 

First, 
n n

log(n!) = log i < log n = n log n. 
i=1 i=1 

On the other hand, 

n n

log(n!) = log i > log i 
i=1 i=�(n+1)/2� 

n� n 
> log(n/2) > log(n/2)

2 
· 

i=�(n+1)/2� 

n((log n) − 1) n log n n 
= = 

2 2 
− 

2 
n log n n log n 

> for n > 8.
2 

− 
6


1

= n log n.

3 
· 

Therefore, (1/3)n log n < log(n!) < n log n for n > 8, proving that log(n!) = Θ(n log n). 
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