In-Class Problems Week 9, Wed.

Problem 1.

Recall that for functions f, g on \mathbb{N} , f = O(g) iff

$$\exists c \in \mathbb{N} \, \exists n_0 \in \mathbb{N} \, \forall n \ge n_0 \quad c \cdot g(n) \ge |f(n)| \,. \tag{1}$$

For each pair of functions below, determine whether f = O(g) and whether g = O(f). In cases where one function is O() of the other, indicate the *smallest nonegative integer*, c, and for that smallest *c*, the *smallest corresponding nonegative integer* n_0 ensuring that condition (1) applies.

(a) $f(n) = n^2, g(n) = 3n.$				
f = O(g)	YES	NO	If YES, <i>c</i> =	, n_0 =
g = O(f)	YES	NO	If YES, <i>c</i> =	, n_0 =
(b) $f(n) = (3n-7)/(n+4), g(n) = 4$				
f = O(g)	YES	NO	If YES, <i>c</i> =	, n_0 =
g = O(f)	YES	NO	If YES, <i>c</i> =	, n_0 =
(c) $f(n) = 1 + (n\sin(n\pi/2))^2, g(n) = 3n$				
f = O(g)	YES	NO	If yes, $c = $	n_0 =
g = O(f)	YES	NO	If yes, $c = $	<i>n</i> _0 =

Problem 2.

- (a) Define a function f(n) such that $f = \Theta(n^2)$ and NOT $(f \sim n^2)$.
- **(b)** Define a function g(n) such that $g = O(n^2)$, $g \neq \Theta(n^2)$ and $g \neq o(n^2)$.

Problem 3.

False Claim.

$$2^n = O(1). \tag{2}$$

Explain why the claim is false. Then identify and explain the mistake in the following bogus proof.

Creative Commons 2010, Prof. Albert R. Meyer.

Bogus proof. The proof by induction on *n* where the induction hypothesis, P(n), is the assertion (2). **base case:** P(0) holds trivially.

inductive step: We may assume P(n), so there is a constant c > 0 such that $2^n \le c \cdot 1$. Therefore,

$$2^{n+1} = 2 \cdot 2^n \le (2c) \cdot 1,$$

which implies that $2^{n+1} = O(1)$. That is, P(n+1) holds, which completes the proof of the inductive step.

We conclude by induction that $2^n = O(1)$ for all *n*. That is, the exponential function is bounded by a constant.

Problem 4.

Give an elementary proof (without appealing to Stirling's formula) that $\log(n!) = \Theta(n \log n)$.

Asymptotic Notations

Let f, g be functions from \mathbb{R} to \mathbb{R} .

- *f* is asymptotically equal to *g*: $f(x) \sim g(x)$ iff $\lim_{x\to\infty} f(x)/g(x) = 1$.
- *f* is asymptotically smaller than *g*: f(x) = o(g(x)) iff $\lim_{x\to\infty} f(x)/g(x) = 0$.
- for f, g nonnegative, f = O(g) iff $\limsup_{x\to\infty} f(x)/g(x) < \infty$, where $\limsup_{x\to\infty} h(x) ::= \lim_{x\to\infty} \operatorname{lub}_{y\geq x} h(y)$. An alternative, equivalent, definition is

f = O(g) iff $\exists c, x_0 \in \mathbb{R}^+ \, \forall x \ge x_0. \, f(x) \le cg(x).$

• Finally, $f = \Theta(g)$ iff f = O(g) and g = O(f).

6.042J / 18.062J Mathematics for Computer Science Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.