Solutions to In-Class Problems Week 8, Fri.

Problem 1.

Let's try out RSA! There is a complete description of the algorithm at the bottom of the page. You'll probably need extra paper. **Check your work carefully!**

- **(a)** As a team, go through the **beforehand** steps.
	- Choose primes p and q to be relatively small, say in the range 10-40. In practice, p and q might contain several hundred digits, but small numbers are easier to handle with pencil and paper.
	- Try $e = 3, 5, 7, \ldots$ until you find something that works. Use Euclid's algorithm to compute the gcd.
	- Find d (using the Pulverizer —see appendix for a reminder on how the Pulverizer works —or Euler's Theorem).

When you're done, put your public key on the board. This lets another team send you a message.

(b) Now send an encrypted message to another team using their public key. Select your message m from the codebook below:

- $2 =$ Greetings and salutations!
- $3 = Y_0$, wassup?
- $4 = You$ guys are slow!
- $5 = All your base are belong to us.$
- • 6 = Someone on *our* team thinks someone on *your* team is kinda cute.
- $7 = You$ *are* the weakest link. Goodbye.
- **(c)** Decrypt the message sent to you and verify that you received what the other team sent!

RSA Public Key Encryption

Creative Commons 2010, [Prof. Albert R. Meyer.](http://people.csail.mit.edu/meyer)

Beforehand The receiver creates a public key and a secret key as follows.

- 1. Generate two distinct primes, p and q .
- 2. Let $n = pq$.
- 3. Select an integer *e* such that $gcd(e,(p-1)(q-1)) = 1$. The *public key* is the pair (e, n). This should be distributed widely.
- 4. Compute d such that $de \equiv 1 \pmod{(p-1)(q-1)}$. The *secret* key is the pair (d, n) . This should be kept hidden!

Encoding The sender encrypts message m, where $0 \le m \le n$, to produce m' using the public key:

$$
m' = \operatorname{rem}(m^e, n).
$$

Decoding The receiver decrypts message m' back to message m using the secret key:

 $m = \text{rem}((m')^d, n).$

Problem 2.

A critical fact about RSA is, of course, that decrypting an encrypted message always gives back the original message! That is, that $rem((m^d)^e, pq) = m$. This will follow from something slightly more general:

Lemma 2.1. Let *n* be a product of distinct primes and $a \equiv 1 \pmod{\phi(n)}$ for some nonnegative integer, a. *Then*

$$
m^a \equiv m \pmod{n}.\tag{1}
$$

M

(a) Explain why Lemma [2.1](#page-1-0) implies that k and k^5 have the same last digit. For example:

 $\underline{2}^5 = 3\underline{2}$ $7\underline{9}^5 = 307705639\underline{9}$

Hint: What is $\phi(10)$?

Solution. Two nonnegative integers have the same last digit iff they are \equiv (mod 10). Now $\phi(10) = \phi(2)\phi(5) = 4$ and $5 \equiv 1 \pmod{4}$, so by Lemma [2.1,](#page-1-0)

$$
k^5 \equiv k \pmod{10}.
$$

(b) Explain why Lemma [2.1](#page-1-0) implies that the original message, m, equals rem($(m^e)^d$, pq).

Solution. To apply Lemma [2.1](#page-1-0) to RSA, note that the first condition of the Lemma is that n be a product of primes. In RSA, $n = pq$ so this condition holds.

For $n = pq$, the Euler function equations (see the Appendix) imply that $\phi(n) = (p-1)(q-1)$. So when d and e are chosen according to RSA, $de \equiv 1 \pmod{\phi(n)}$. So $a ::= de$ satisfies the second condition of the Lemma.

Now, from equation [\(1\)](#page-1-1) with $n = pq$ and $a = de$, we have

$$
(m^e)^d = m^{de} \equiv m \pmod{pq}.
$$

Hence,

$$
rem((me)d, pq) = rem(m, pq),
$$

but rem $(m, pq) = m$, since $0 \le m < pq$.

(c) Prove that if p is prime, then

 $m^a \equiv m \pmod{p}$ (2)

for all nonnegative integers $a \equiv 1 \pmod{p-1}$.

Solution. If $p \mid m$, then equation [\(2\)](#page-2-0) holds since both sides of the congruence are $\equiv 0 \pmod{p}$. So assume p does not divide m. Now if $a \equiv 1 \pmod{p-1}$, then $a = 1 + (p-1)k$ for some k, so

$$
m^{a} = m^{1+(p-1)k}
$$

= $m \cdot (m^{p-1})^{k}$
 $\equiv m \cdot (1)^{k} \pmod{p}$ (by Fermat's Little Thm.)
 $\equiv m \pmod{p}$.

(d) Prove that if n is a product of distinct primes, and $a \equiv b \pmod{p}$ for all prime factors, p, of n, then $a \equiv b \pmod{n}$.

Solution. By definition of congruence, $a \equiv b \pmod{k}$ iff $k \mid (a - b)$. So if $a \equiv b \pmod{p}$ for each prime factor, p, of n, then $p \mid (a - b)$ for each prime factor, p, and hence, so does their product (by the Unique Factorization Theorem). That is, $n | (a - b)$, which means $a \equiv b \pmod{n}$.

(e) Combine the previous parts to complete the proof of Lemma [2.1.](#page-1-0)

Solution. Suppose *n* is a product of distinct primes, $p_1p_2 \cdots p_k$. Then from the formulas for the Euler function, ϕ , we have

$$
\phi(n) = (p_1 - 1)(p_2 - 1) \cdots (p_k - 1).
$$

Now suppose $a \equiv 1 \pmod{\phi(n)}$, that is, a is 1 plus a multiple of $\phi(n)$, so it is also 1 plus a multiple of $p_i - 1$. That is,

 $a \equiv 1 \pmod{p_i-1}.$

Hence, by part (c) ,

$$
m^a \equiv m \pmod{p_i}
$$

for all m. Since this holds for all factors, p_i , of n, we conclude from part [\(d\)](#page-2-2) that

$$
m^a \equiv m \pmod{n},
$$

which proves Lemma [2.1.](#page-1-0) \blacksquare

 \blacksquare

Appendix

Inverses, Fermat, Euler

Lemma (Inverses mod n). If k and n are relatively prime, then there is integer k' called the modulo n inverse *of* k*, such that*

 $k \cdot k' \equiv 1 \pmod{n}.$

Remark: If $gcd(k, n) = 1$, then $sk + tn = 1$ for some s, t , so we can choose $k' ::= s$ in the previous Lemma. So given k and n , an inverse k' can be found efficiently using the Pulverizer.

Theorem (Fermat's (Little) Theorem)**.** *If* p *is prime and* k *is not a multiple of* p*, then*

$$
k^{p-1} \equiv 1 \pmod{p}
$$

Definition. The value of *Euler's totient function*, $\phi(n)$, is defined to be the number of positive integers less than n that are relatively prime to n .

Lemma (Euler Totient Function Equations)**.**

$$
\phi(p^k) = p^k - p^{k-1}
$$
 for prime, p, and $k > 0$,
\n
$$
\phi(mn) = \phi(m) \cdot \phi(n)
$$
 when $gcd(m, n) = 1$.

Theorem (Euler's Theorem)**.** *If* k *and* n *are relatively prime, then*

 $k^{\phi(n)} \equiv 1 \pmod{n}$

Corollary. *If* k and *n* are relatively prime, then $k^{\phi(n)-1}$ is an inverse modulo *n* of k.

Remark: Using fast exponentiation to compute $k^{\phi(n)-1}$ is another efficient way to compute an inverse modulo n of k.

The Pulverizer

Euclid's algorithm for finding the GCD of two numbers relies on repeated application of the equation:

$$
\gcd(a, b) = \gcd(b, \text{rem}(a, b))
$$

For example, we can compute the GCD of 259 and 70 as follows:

 $gcd(259, 70) = gcd(70, 49)$ since rem(259, 70) = 49 $=$ gcd(49, 21) since rem(70, 49) = 21 $=$ gcd(21, 7) since rem(49, 21) = 7 $=$ gcd(7,0) since rem(21,7) = 0 $= 7$

The Pulverizer goes through the same steps, but requires some extra bookkeeping along the way: as we compute $gcd(a, b)$, we keep track of how to write each of the remainders (49, 21, and 7, in the example) as a linear combination of a and b (this is worthwhile, because our objective is to write

the last nonzero remainder, which is the GCD, as such a linear combination). For our example, here is this extra bookkeeping:

x	y	$rem(x, y)$	$= x - q \cdot y$
259	70	49	$= 259 - 3 \cdot 70$
70	49	21	$= 70 - 1 \cdot 49$
$= 70 - 1 \cdot (259 - 3 \cdot 70)$			
$= -1 \cdot 259 + 4 \cdot 70$			
49	21	7	$= 49 - 2 \cdot 21$
$= (259 - 3 \cdot 70) - 2 \cdot (-1 \cdot 259 + 4 \cdot 70)$			
$= \boxed{3 \cdot 259 - 11 \cdot 70}$			

We began by initializing two variables, $x = a$ and $y = b$. In the first two columns above, we carried out Euclid's algorithm. At each step, we computed $rem(x, y)$, which can be written in the form $x - q \cdot y$. (Remember that the Division Algorithm says $x = q \cdot y + r$, where r is the remainder. We get $r = x - q \cdot y$ by rearranging terms.) Then we replaced x and y in this equation with equivalent linear combinations of a and b , which we already had computed. After simplifying, we were left with a linear combination of a and b that was equal to the remainder as desired. The final solution is boxed.

6.042J / 18.062J Mathematics for Computer Science Spring 2010

For information about citing these materials or our Terms of Use, visit:<http://ocw.mit.edu/terms>.