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Solutions to In-Class Problems Week 8, Fri.

Problem 1.
Let’s try out RSA! There is a complete description of the algorithm at the bottom of the page. You'll
probably need extra paper. Check your work carefully!

(@) As ateam, go through the beforehand steps.

* Choose primes p and ¢ to be relatively small, say in the range 10-40. In practice, p and ¢ might
contain several hundred digits, but small numbers are easier to handle with pencil and paper.

* Try e = 3,5,7,... until you find something that works. Use Euclid’s algorithm to compute
the ged.

¢ Find d (using the Pulverizer —see appendix for a reminder on how the Pulverizer works —or
Euler’s Theorem).

When you're done, put your public key on the board. This lets another team send you a message.

(b) Now send an encrypted message to another team using their public key. Select your message
m from the codebook below:

2 = Greetings and salutations!

* 3 = Yo, wassup?

4 = You guys are slow!

5 = All your base are belong to us.

6 = Someone on our team thinks someone on your team is kinda cute.

7 = You are the weakest link. Goodbye.

(c) Decrypt the message sent to you and verify that you received what the other team sent!

RSA Public Key Encryption
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Beforehand The receiver creates a public key and a secret key as follows.

1. Generate two distinct primes, p and g.
2. Letn = pq.

3. Select an integer e such that ged(e, (p —1)(¢ — 1)) = 1.
The public key is the pair (e, n). This should be distributed widely.

4. Compute d such that de =1 (mod (p — 1)(¢ — 1)).
The secret key is the pair (d, n). This should be kept hidden!

Encoding The sender encrypts message m, where 0 < m < n, to produce
m/ using the public key:

m' = rem(m®,n).

Decoding The receiver decrypts message m’ back to message m using the

secret key:
/)d

m = rem((m’)%,n).

Problem 2.

A critical fact about RSA is, of course, that decrypting an encrypted message always gives back
the original message! That is, that rem((m?)¢, pg) = m. This will follow from something slightly
more general:

Lemma 2.1. Let n be a product of distinct primes and a =1 (mod ¢(n)) for some nonnegative integer, a.
Then

m®=m (mod n). (1)
(a) Explain why Lemma 2.1 implies that k and k% have the same last digit. For example:
2° =32 79° = 3077056399

Hint: What is ¢(10)?

Solution. Two nonnegative integers have the same last digit iff they are = (mod 10). Now
#(10) = ¢(2)¢(5) =4and 5 =1 (mod 4), so by Lemma 2.1,

k> =k (mod 10).

(b) Explain why Lemma 2.1 implies that the original message, m, equals rem((m®)?, pq).

Solution. To apply Lemma 2.1 to RSA, note that the first condition of the Lemma is that n be a
product of primes. In RSA, n = pq so this condition holds.
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For n = pgq, the Euler function equations (see the Appendix) imply that ¢(n) = (p — 1)(¢ — 1). So
when d and e are chosen according to RSA, de = 1 (mod ¢(n)). So a ::= de satisfies the second
condition of the Lemma.

Now, from equation (1) with n = pg and a = de, we have

(m€)4 =m®* =m (mod pq).

Hence,
rem((m®)?, pg) = rem(m, pq),
but rem(m, pq) = m, since 0 < m < pq. |
(c) Prove that if p is prime, then
m®=m (mod p) (2)

for all nonnegative integers a = 1 (mod p — 1).

Solution. If p | m, then equation (2) holds since both sides of the congruence are = 0 (mod p).
So assume p does not divide m. Now ifa =1 (mod p — 1), thena = 1+ (p — 1)k for some k, so

m — =Dk
=m- (mp_l)
=m- (1) (mod p) (by Fermat’s Little Thm.)
=m (mod p).

k

(d) Prove thatif n is a product of distinct primes, and a = b (mod p) for all prime factors, p, of n,
thena = b (mod n).

Solution. By definition of congruence, a = b (mod k) iff k | (a — b). So if a = b (mod p) for each
prime factor, p, of n, then p | (a — b) for each prime factor, p, and hence, so does their product (by
the Unique Factorization Theorem). That is, n | (a — b), which means ¢ = b (mod n). [ |

(e) Combine the previous parts to complete the proof of Lemma 2.1.

Solution. Suppose n is a product of distinct primes, pips - - - pr. Then from the formulas for the
Euler function, ¢, we have

¢(n) = (p1—1)(p2—1)-(px — 1).

Now suppose a =1 (mod ¢(n)), thatis, a is 1 plus a multiple of ¢(n), soitis also 1 plus a multiple
of p; — 1. That s,
a=1 (modp;—1).

Hence, by part (c),
m*=m (mod p;)

for all m. Since this holds for all factors, p;, of n, we conclude from part (d) that
m®*=m (mod n),

which proves Lemma 2.1. [ |
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Appendix

Inverses, Fermat, Euler

Lemma (Inverses mod n). If k and n are relatively prime, then there is integer k' called the modulo n
inverse of k, such that
k-k'=1 (mod n).

Remark: If ged(k,n) = 1, then sk + tn = 1 for some s, t, so we can choose k' ::= s in the previous
Lemma. So given k and n, an inverse &’ can be found efficiently using the Pulverizer.

Theorem (Fermat’s (Little) Theorem). If p is prime and k is not a multiple of p, then
E~1=1 (mod p)

Definition. The value of Euler’s totient function, ¢(n), is defined to be the number of positive inte-
gers less than n that are relatively prime to n.

Lemma (Euler Totient Function Equations).
¢(p*) = p" —p*! for prime, p, and k > 0,
b(mn) = d(m) - 6(n) when ged(m,n) = 1.
Theorem (Euler’s Theorem). If k and n are relatively prime, then
k*™ =1 (mod n)

n)—1

Corollary. If k and n are relatively prime, then k%( is an inverse modulo n of k.

Remark: Using fast exponentiation to compute k(") ~1 is another efficient way to compute an
inverse modulo n of k.

The Pulverizer

Euclid’s algorithm for finding the GCD of two numbers relies on repeated application of the equa-
tion:
ged(a, b) = ged(b, rem(a, b))

For example, we can compute the GCD of 259 and 70 as follows:

ged(259,70) = ged(70,49) since rem(259,70) = 49
= gcd(49,21) since rem(70,49) = 21
= gcd(21,7) since rem(49, 21)
= gcd(7,0) since rem(21,7) =
= T.

The Pulverizer goes through the same steps, but requires some extra bookkeeping along the way:
as we compute ged(a, b), we keep track of how to write each of the remainders (49, 21, and 7, in the
example) as a linear combination of a and b (this is worthwhile, because our objective is to write
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the last nonzero remainder, which is the GCD, as such a linear combination). For our example,
here is this extra bookkeeping;:

x y rem(z,y) = r—q-y
259 70 49 = 259-3-70
70 49 21 = 70-1-49
= 70-1-(259—3-70)
= —1:259+4-70
49 21 7 = 49-2-21
= (259 —3-70) —2-(~1-259 +4-70)
13259 —11-70]
21 7 0

We began by initializing two variables, z = a and y = b. In the first two columns above, we carried
out Euclid’s algorithm. At each step, we computed rem(z, y), which can be written in the form
x — ¢ - y. (Remember that the Division Algorithm says z = ¢ - y + r, where r is the remainder. We
getr = x — ¢ - y by rearranging terms.) Then we replaced x and y in this equation with equivalent
linear combinations of a and b, which we already had computed. After simplifying, we were left
with a linear combination of @ and b that was equal to the remainder as desired. The final solution
is boxed.
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