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Solutions to In-Class Problems Week 8, Mon. 

Problem 1. 
A number is perfect if it is equal to the sum of its positive divisors, other than itself. For example, 
6 is perfect, because 6 = 1 + 2 + 3. Similarly, 28 is perfect, because 28 = 1 + 2 + 4 + 7 + 14. Explain 
why 2k−1(2k − 1) is perfect when 2k − 1 is prime.1 

Solution. If 2k − 1 is prime, then the only divisors of 2k−1(2k − 1) are: 

1, 2, 4, . . . , 2k−1 , (1) 

and 

1 (2k − 1), 2 (2k − 1), 4 (2k − 1), . . . , 2k−2 (2k − 1). (2)· · · · 

The sequence (1) sums to 2k − 1 (using the formula for a geometric series,2 and likewise the se
quence (2) sums to (2k−1 − 1) (2k − 1). Adding these two sums gives 2k−1(2k − 1), so the number · 
is perfect. � 

Problem 2. (a) Use the Pulverizer to find integers x, y such that 

x 50 + y 21 = gcd(50, 21).· · 

Creative Commons 2010, Prof. Albert R. Meyer. 
1Euclid proved this 2300 years ago. About 250 years ago, Euler proved the converse: every even perfect number is 

of this form (for a simple proof see http://primes.utm.edu/notes/proofs/EvenPerfect.html). As is typical 
in number theory, apparently simple results lie at the brink of the unknown. For example, it is not known if there are 
an infinite number of even perfect numbers or any odd perfect numbers at all. 

2It’s fun to notice the “Computer Science” proof that (1) sums to 2k − 1. The binary binary representation of 2j is a 
10j , so the sum is represented by 1k. This what you get by subtracting 1 from by 10k which is the binary representation 
of 2k . 

http://web.mit.edu/
http://courses.csail.mit.edu/6.042/spring10
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http://primes.utm.edu/notes/proofs/EvenPerfect.html
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Solution. Here is the table produced by the Pulverizer: 

x y rem(x, y) = yx − q · 
50 21 8 = 50 − 2 21· 
21 8 5 = 21 − 2 8· 

= 21 − 2 (50 − 2 21)· · 
= −2 50 + 5 21· · 

8 5 3 = 8 − 1 5· 
= (50 − 2 21) − 1 (−2 50 + 5 21)· · · · 
= 3 50 − 7 21· · 

5 3 2 = 5 − 1 3· 
= 50 + 5 21) − 1 (3 50 − 7 21)(−2 · · · · · 
= −5 50 + 12 21· · 

3 2 1 = 3 − 1 2· 
= (3 50 − 7 21) − 1 (−5 50 + 12 21)· · · · · 
= 8 50 − 19 21· · 

2 1 0 

(b) Now find integers x�, y� with y� > 0 such that 

x� 50 + y� 21 = gcd(50, 21)· · 

Solution. since (x, y) = (8, −19) works, so does (8 − 21n, −19 + 50n) for any n ∈ Z, so letting 
n = 1, we have 

−13 50 + 31 21 = 1 · · 

Problem 3. 
For nonzero integers, a, b, prove the following properties of divisibility and GCD’S. (You may use 
the fact that gcd(a, b) is an integer linear combination of a and b. You may not appeal to uniqueness 
of prime factorization because the properties below are needed to prove unique factorization.) 

(a) Every common divisor of a and b divides gcd(a, b). 

Solution. For some s and t, gcd(a, b) = sa + tb. Let c be a common divisor of a and b. Since c | a 
and c | b, we have a = kc, b = k�c so 

sa + tb = skc + tk�c = c(sk + tk�) 

so c | sa + tb. � 

(b) If a | bc and gcd(a, b) = 1, then a | c. 
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Solution. Since gcd(a, b) = 1, we have sa + tb = 1 for some s, t. Multiplying by c, we have 

sac + tbc = c 

but a divides the second term of the sum since a | bc, and it obviously divides the first term, and 
therefore it divides the sum, which equals c. 

(c) If p | ab for some prime, p, then p | a or p | b. 

Solution. If p does not divide a, then since p is prime, gcd(p, a) = 1. By part (b), we conclude that 
p | b. � 

(d) Let m be the smallest integer linear combination of a and b that is positive. Show that m = 
gcd(a, b). 

Solution. Since gcd(a, b) is positive and an integer linear common of a and b, we have 

m ≤ gcd(a, b). 

On the other hand, since m is a linear combination of a and b, every common factor of a and b 
divides m. So in particular, gcd(a, b) | m, which implies 

gcd(a, b) ≤ m. 

Appendix: The Pulverizer 

Euclid’s algorithm for finding the GCD of two numbers relies on repeated application of the equa
tion: 

gcd(a, b) = gcd(b, rem(a, b)) 

For example, we can compute the GCD of 259 and 70 as follows: 

gcd(259, 70) = gcd(70, 49) since rem(259, 70) = 49 
= gcd(49, 21) since rem(70, 49) = 21 
= gcd(21, 7) since rem(49, 21) = 7 
= gcd(7, 0) since rem(21, 7) = 0 
= 7. 

The Pulverizer goes through the same steps, but requires some extra bookkeeping along the way: 
as we compute gcd(a, b), we keep track of how to write each of the remainders (49, 21, and 7, in the 
example) as a linear combination of a and b (this is worthwhile, because our objective is to write 



4 Solutions to In-Class Problems Week 8, Mon. 

the last nonzero remainder, which is the GCD, as such a linear combination). For our example, 
here is this extra bookkeeping: 

x y rem(x, y) = yx − q · 
259 70 49 = 259 − 3 · 70 
70 49 21 = 70 − 1 · 49 

= 70 − 1 · (259 − 3 · 70) 
= −1 · 259 + 4 · 70 

49 21 7 = 49 − 2 · 21 
= (259 − 3 · 70) − 2 · (−1 · 259 + 4 · 70) 
= 3 · 259 − 11 · 70 

21 7 0 

We began by initializing two variables, x = a and y = b. In the first two columns above, we carried 
out Euclid’s algorithm. At each step, we computed rem(x, y), which can be written in the form 
x − q y. (Remember that the Division Algorithm says x = q y + r, where r is the remainder. We · · 
get r = x − q y by rearranging terms.) Then we replaced x and y in this equation with equivalent · 
linear combinations of a and b, which we already had computed. After simplifying, we were left 
with a linear combination of a and b that was equal to the remainder as desired. The final solution 
is boxed. 
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