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In-Class Problems Week 7, Fri. 

Problem 1. 
Figures 1–4 show different pictures of planar graphs. 

1

a

b
c

d

Figure 1

a

b

c

d

Figure 2

a

b
c

d

e
Figure 3

a

b

c

d

e
Figure 4

Creative Commons 2010, Prof. Albert R. Meyer. 

http://web.mit.edu/
http://courses.csail.mit.edu/6.042/spring10
http://people.csail.mit.edu/meyer
http://people.csail.mit.edu/meyer


2 In-Class Problems Week 7, Fri. 

(a) For each picture, describe its discrete faces (simple cycles that define the region borders). 

(b) Which of the pictured graphs are isomorphic? Which pictures represent the same planar em
bedding? – that is, they have the same discrete faces. 

(c) Describe a way to construct the embedding in Figure 4 according to the recursive Defini
tion 12.3.1 of planar embedding. For each application of a constructor rule, be sure to indicate the 
faces (cycles) to which the rule was applied and the cycles which result from the application. 

Problem 2. 
Prove the following assertions by structural induction on the definition of planar embedding. 

(a) In a planar embedding of a graph, each edge is traversed a total of two times by the faces of 
the embedding. 

(b) In a planar embedding of a connected graph with at least three vertices, each face is of length 
at least three. 

Problem 3. (a) Show that if a connected planar graph with more than two vertices is bipartite, 
then 

e ≤ 2v − 4.	 (1) 

Hint: Similar to the proof that e ≤ 3v − 6. Use Problem 2. 

(b) Conclude that that K3,3 is not planar. (K3,3 is the graph with six vertices and an edge from 
each of the first three vertices to each of the last three.) 

Appendix 

Definition 3.1. A planar embedding of a connected graph consists of a nonempty set of cycles of the 
graph called the discrete faces of the embedding. Planar embeddings are defined recursively as 
follows: 

•	 Base case: If G is a graph consisting of a single vertex, v, then a planar embedding of G has 
one discrete face, namely the length zero cycle, v. 

•	 Constructor Case: (split a face) Suppose G is a connected graph with a planar embedding, 
and suppose a and b are distinct, nonadjacent vertices of G that appear on some discrete 
face, γ, of the planar embedding. That is, γ is a cycle of the form 

a . . . b a.· · · 

Then the graph obtained by adding the edge a—b to the edges of G has a planar embedding 
with the same discrete faces as G, except that face γ is replaced by the two discrete faces1 

a . . . ba and ab · · · a, 

http://courses.csail.mit.edu/6.042/spring10/mcs.pdf#theorem.12.3.1
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Figure 1: The Split a Face Case. 

as illustrated in Figure 1. 

•	 Constructor Case: (add a bridge) Suppose G and H are connected graphs with planar em-
beddings and disjoint sets of vertices. Let a be a vertex on a discrete face, γ, in the embedding 
of G. That is, γ is of the form 

a . . . a. 

Similarly, let b be a vertex on a discrete face, δ, in the embedding of H , so δ is of the form 

b b.· · · 

Then the graph obtained by connecting G and H with a new edge, a—b, has a planar em
bedding whose discrete faces are the union of the discrete faces of G and H , except that faces 
γ and δ are replaced by one new face 

a . . . ab ba,· · · 

as illustrated in Figure 2. 

An arbitrary graph is planar iff each of its connected components has a planar embedding. 

Theorem 3.2 (Euler’s Formula). If a connected graph has a planar embedding, then 

v − e + f = 2 

where v is the number of vertices, e is the number of edges, and f is the number of faces. 

1 There is one exception to this rule. If G is a line graph beginning with a and ending with b, then the cycles into 
which γ splits are actually the same. That’s because adding edge a—b creates a simple cycle graph, Cn, that divides the 
plane into an “inner” and an “outer” region with the same border. In order to maintain the correspondence between 
continuous faces and discrete faces, we have to allow two “copies” of this same cycle to count as discrete faces. But 
since this is the only situation in which two faces are actually the same cycle, this exception is better explained in a 
footnote than mentioned explicitly in the definition. 
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Figure 2: The Add Bridge Case. 

Corollary 3.3. Suppose a connected planar graph has v ≥ 3 vertices and e edges. Then 

e ≤ 3v − 6. 

Proof. By definition, a connected graph is planar iff it has a planar embedding. So suppose a 
connected graph with v vertices and e edges has a planar embedding with f faces. By Problem 2.a, 
every edge is traversed exactly twice by the face boundaries. So the sum of the lengths of the face 
boundaries is exactly 2e. Also by Problem 2.b, when v ≥ 3, each face boundary is of length at least 
three, so this sum is at least 3f . This implies that 

3f ≤ 2e. (2) 

But f = e − v + 2 by Euler’s formula, and substituting into (2) gives 

3(e − v + 2) ≤ 2e 

e − 3v + 6 ≤ 0 

e ≤ 3v − 6 

� 

Corollary 3.4. K5 is not planar. 

Proof. 
e = 10 > 9 = 3v − 6. 

� 
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