
Massachusetts Institute of Technology
6.042J/18.062J, Spring ’10: Mathematics for Computer Science March 17
Prof. Albert R. Meyer revised March 2, 2010, 733 minutes

In-Class Problems Week 7, Wed.

Problem 1.
The Elementary 18.01 Functions (F18’s) are the set of functions of one real variable defined recur
sively as follows:

Base cases:

• The identity function, id(x) ::= x is an F18,

• any constant function is an F18,

• the sine function is an F18,

Constructor cases:

If f, g are F18’s, then so are

1. f + g, fg, eg (the constant e),

2. the inverse function f (−1),

3. the composition f g.◦

(a) Prove that the function 1/x is an F18.

Warning: Don’t confuse 1/x = x−1 with the inverse, id(−1) of the identity function id(x). The
inverse id(−1) is equal to id.

(b) Prove by Structural Induction on this definition that the Elementary 18.01 Functions are closed
under taking derivatives. That is, show that if f(x) is an F18, then so is f � ::= df/dx. (Just work out 2
or 3 of the most interesting constructor cases; you may skip the less interesting ones.)

Problem 2.

Let p be the string [] . A string of brackets is said to be erasable iff it can be reduced to the

empty string by repeatedly erasing occurrences of p. For example, here’s how to erase the string

[[[]] []] [] :

[[[]] []] [] [[]] [] λ.→ → →

On the other hand the string []] [[[[[]] is not erasable because when we try to erase, we get
stuck:

[]] [[[[[]] →] [[[[] →] [[[�→

Let Erasable be the set of erasable strings of brackets. Let RecMatch be the recursive data type of
strings of matched brackets given in Definition 11.3.7.

Creative Commons 2010, Prof. Albert R. Meyer.

http://web.mit.edu/
http://courses.csail.mit.edu/6.042/spring10
http://people.csail.mit.edu/meyer
http://courses.csail.mit.edu/6.042/spring10/mcs.pdf#theorem.11.3.7
http://people.csail.mit.edu/meyer

�

2	 In-Class Problems Week 7, Wed.

(a) Use structural induction to prove that

RecMatch ⊆ Erasable .

(b) Supply the missing parts of the following proof that

Erasable ⊆ RecMatch .

Proof. We prove by induction on the length, n, of strings, x, that if x ∈ Erasable, then x ∈
RecMatch. The induction predicate is

P (n) ::= ∀x ∈ Erasable . (|x| ≤ n IMPLIES x ∈ RecMatch)

Base case:

What is the base case? Prove that P is true in this case.

Inductive step: To prove P (n + 1), suppose |x| ≤ n + 1 and x ∈ Erasable. We need only show that
x ∈ RecMatch. Now if |x| < n+1, then the induction hypothesis, P (n), implies that x ∈ RecMatch,

so we only have to deal with x of length exactly n + 1.

Let’s say that a string y is an erase of a string z iff y is the result of erasing a single occurrence of p

in z.

Since x ∈ Erasable and has positive length, there must be an erase, y ∈ Erasable, of x. So |y| = n−1,

and since y ∈ Erasable, we may assume by induction hypothesis that y ∈ RecMatch.

Now we argue by cases:

Case (y is the empty string).

Prove that x ∈ RecMatch in this case.

Case (y = [s] t for some strings s, t ∈ RecMatch.) Now we argue by subcases.

•	 Subcase (x is of the form [s�] t where s is an erase of s�).
Since s ∈ RecMatch, it is erasable by part (b), which implies that s� ∈ Erasable. But |s�| < |x|,
so by induction hypothesis, we may assume that s� ∈ RecMatch. This shows that x is the
result of the constructor step of RecMatch, and therefore x ∈ RecMatch.

•	 Subcase (x is of the form [s] t� where t is an erase of t�).

Prove that x ∈ RecMatch in this subcase.

•	 Subcase(x = p[s] t).

Prove that x ∈ RecMatch in this subcase.

The proofs of the remaining subcases are just like this last one. List these remaining subcases.

This completes the proof by induction on n, so we conclude that P (n) holds for all n ∈ N. There
fore x ∈ RecMatch for every string x ∈ Erasable. That is,

Erasable ⊆ RecMatch and hence Erasable = RecMatch .

� �

� �

� �

3 In-Class Problems Week 7, Wed.

Problem 3.
Here is a simple recursive definition of the set, E, of even integers:

Definition. Base case: 0 ∈ E.

Constructor cases: If n ∈ E, then so are n + 2 and −n.

Provide similar simple recursive definitions of the following sets:

(a) The set S ::= 2k3m5n | k, m, n ∈ N .

(b) The set T ::= 2k32k+m5m+n | k, m, n ∈ N .

(c) The set L ::= (a, b) ∈ Z2 | 3 | (a − b) .

Let L� be the set defined by the recursive definition you gave for L in the previous part. Now
if you did it right, then L� = L, but maybe you made a mistake. So let’s check that you got the
definition right.

(d) Prove by structural induction on your definition of L� that

L� ⊆ L.

(e) Confirm that you got the definition right by proving that

L ⊆ L�.

(f) See if you can give an unambiguous recursive definition of L.

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Problem 1
	Problem 2
	Problem 3

