

Matched Paren Strings M				
strings in M	i			
[]	s =	λ	$\mathbf{t} = \lambda$	
[[]]	s =	[]	$\mathbf{t} = \lambda$	
[][]	s =	λ	† = []	
[[]]]	s =	[]	† = []	
[[[]]]	s =	[[]]	$\dagger = \lambda$	
:		:	:	
Albert R Meyer, March 17, 2010				7W.10

Structural Induction on M Proof: Ind. Hyp. $P(s) ::= (s \in EQ)$ Base case ($s = \lambda$): λ has 0]'s and 0 ['s, so $P(\lambda)$ is true. base case is OK lec 7W.17

Structural Induction on M
Constructor step:
$$s = [r]^{\dagger}$$

can assume P(r) and P(t)
#] in $s = #$] in $r + #$] in $t + 1$
#[in $s = #$ [in $r + #$] in $t + 1$
so $= \#$ [in $r + \#$ [in $t + 1$
so $= by P(r) = by P(t)$
so P(s) is true construct case is OK

The 18.01 Functions, F18
Some functions in F18:

$$-x = (-1) \cdot x$$

 $\sqrt{x} = (x^2)^{(-1)}$ ----inverse
 $\cos x = (1 - (\sin x \cdot \sin x))^{1/2}$
 $\ln x = (e^x)^{(-1)}$

Recursive function on M
Def. depth(s) for
$$s \in M$$

depth(λ) ::= 0
depth([s]t)::=
max{1+d(s), d(t)}
Metr Meyr. Mech 17, 2010

$$k^{n} - recursive function on \mathbb{N}$$

expt(k, 0) ::= 1
expt(k, n+1) ::= k expt(k,n)
--uses recursive def of \mathbb{N} :
• $0 \in \mathbb{N}$
• if $n \in \mathbb{N}$ then $n+1 \in \mathbb{N}$

positive powers of two

$$2 \in PP2$$

if $x, y \in PP2$, then $x \cdot y \in PP2$
 $2, 2 \cdot 2, 4 \cdot 2, 4 \cdot 4, 4 \cdot 8, ...$
 $2 \quad 4 \quad 8 \quad 16 \quad 32 \quad ... \in PP2$
WAT

loggy function on PP2
loggy(2)::= 1
loggy(
$$x \cdot y$$
) ::= $x + \log gy(y)$
for $x, y \in PP2$
loggy(4) = loggy($2 \cdot 2$) = $2 + 1 = 3$
loggy(8) = loggy($2 \cdot 4$) = $2 + \log gy(4)$
= $2 + 3 = 5$
loggy(16) = loggy($8 \cdot 2$) = $8 + \log gy(2)$
= $8 + 1 = 9$

ch 17, 2010

 $\odot \odot \odot$

6.042J / 18.062J Mathematics for Computer Science Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.