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Solutions to In-Class Problems Week 6, Fri. 

Problem 1. 
Prove that a graph is a tree iff it has a unique simple path between any two vertices. 

Solution. Theorem 10.3.1 shows that in a tree there are unique simple paths between any two 
vertices. 

Conversely, suppose we have a graph, G, with unique paths. Now G is connected since there is 
a path between any two vertices. So we need only show that G has no simple cycles. But if there 
was a simple cycle in G, there are two paths between any two vertices on the cycle (going one way 
around the cycle or the other way around), a violation of uniqueness. So G must cannot have any 
simple cycles. � 

Problem 2. 
The n-dimensional hypercube, Hn, is a graph whose vertices are the binary strings of length n. 
Two vertices are adjacent if and only if they differ in exactly 1 bit. For example, in H3, vertices 111 
and 011 are adjacent because they differ only in the first bit, while vertices 101 and 011 are not 
adjacent because they differ at both the first and second bits. 

(a) Prove that it is impossible to find two spanning trees of H3 that do not share some edge. 

Solution. H3 has 8 vertices so every spanning tree has 7 edges. But H3 has only 12 edges, so any 
two sets of 7 edges must overlap. 

(b) Verify that for any two vertices x =� y of H3, there are 3 paths from x to y in H3, such that, 
besides x and y, no two of those paths have a vertex in common. 

Solution. Define the distance between two binary strings of length n to be the number of positions 
at which they differ (this is known as the Hamming distance between the strings).


To show that there are 3 paths between any two distance 1 strings, we can, by symmetry, just

consider paths between the vertices 000 and 001.


Paths from 000 to 001: 

000, 001 

000, 010, 011, 001 

000, 100, 101, 001 
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Likewise for distance 2, it is enough to find paths between 000 and 011: 

000, 010, 011 

000, 001, 011 

000, 100, 110, 111, 011 

Finally, for distance 3 from 000 to 111: 

000, 001, 011, 111 

000, 010, 110, 111 

000, 100, 101, 111 

(c) Conclude that the connectivity of H3 is 3. 

Solution. Since there are three paths from x to y in H3 that share no edges with one another, 
removing any two edges will leave one of these paths intact, so x and y remain connected. So 
removing two edges from H3 does not disconnect it. 

On the other hand, removing all 3 edges incident to any vertex, disconnects that vertex. Thus the 
minimum number of edges necessary to disconnect H3 is 3. � 

(d) Try extending your reasoning to H4. (In fact, the connectivity of Hn is n for all n ≥ 1. A proof 
appears in the problem solution.) 

Solution. Two paths in a graph are said to cross when they have a vertex in common other than 
their endpoints. A set of paths in a graph don’t cross when no two paths in the set cross. A graph 
is k-routed if between every pair of distinct vertices in the graph there is a set of k paths that don’t 
cross. 

We’ll show that 

Lemma 2.1. 
Hn is n-routed for all n ≥ 1. 

Since Hn can be disconnected by deleting the n edges incident to any vertex, this implies that Hn 

has connectivity n. 

Proof. The proof is by induction on n with induction hypothesis, 

P (n) ::= Hn is n-routed. 

Base case [n = 1]: Since H1 consists of two vertices connected by an edge, P (1) is immediate. 

Base case [n = 2]: H2 is a square. Vertices on opposite corners are obviously connected by two 
length 2 paths that don’t cross, and adjacent vertices are connected by a length 1 path and a length 
3 path. 
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Inductive step: We prove P (n + 1) for n ≥ 2 by letting v and w be two vertices of Hn+1 and 
describing n + 1 paths between them that don’t cross. 

Let R by any positive length path in Hn, say 

R = r0, r1, . . . , rk. 

For b ∈ {0, 1} define the Hn+1 path 

bR ::= br0, br1, . . . , brk. 

Case 1: The distance from v to w is d ≤ n. In this case, the (n + 1)-bit strings v and w agree in 
one or more positions. By symmetry, we can assume without loss of generality that v and w both 
start with 0. That is v = 0v� and w = 0w� for some n-bit strings v�, w�. Now by induction, there are 
paths, Qi for 1 ≤ i ≤ n, that don’t cross going between v� and w� in Hn. 

Define the first n paths in Hn+1 between v and w to be 

πi ::= 0Qi 

for 1 ≤ i ≤ n. These paths don’t cross since the Qi’s don’t cross. 

Then define the n + 1st path 
πn+1 ::= v, 1πv�,w� , w 

where πv�,w� is any simple path from v� to w� in Hn. Then πn+1 obviously does not cross any of the

other paths since 1πv�,w� is vertex disjoint from 0Qi for 1 ≤ i ≤ n.


This proves that P (n + 1) hold in this case.


Case 2: The distance from v to w is n + 1. By symmetry, we can assume without loss of generality

that v = 0n+1 and w = 1n+1 .


Now by induction, there are n paths from 0n to 1n in Hn that don’t cross in Hn. We can assume 
wlog1 that each of these paths is simple. 

Removing the shared first vertex, 0n, of these paths yields paths R1, R2, . . . , Rn. Now the Ri’s 
are vertex disjoint except for their common endpoint, 1n . Let si be the start vertex of the Ri for 
1 ≤ i ≤ n. 

We now define n + 1 paths in Hn+1 from 0n+1 to 1n+1 that don’t cross. 

The first of these paths will be 
π1 ::= 0n+1 , 10n , 1R1. 

For 2 ≤ i ≤ n, the ith of these paths will be 

πi ::= 0n+1 , 0si, 1Ri. 

These paths don’t cross because 

•	 the paths 1Ri for 1 ≤ i ≤ n are vertex disjoint except for their common endpoint, 1n+1 , 
because the Ri’s are vertex disjoint except for their common endpoint, 1n , 

1without loss of generality 
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•	 a vertex 0si does not appear on πj for any for j =� i because the si =� sj for j =� i, and the 
other vertices on the πj ’s start with 1, 

•	 the vertex 10n appears only on π1. This follows because if it appeared on πi for i =� 1 it 
must appear on 1Ri. That would imply that 0n appears on Ri, contradicting the fact that the 
original path 0n, Ri in Hn is simple. 

Finally, the n + 1st path will be 
πn+1 ::= 0n+1 , 0R1, 1

n+1 . 

Note that, since all but the final vertex on πn+1 start with 0, the only vertices besides the endpoints 
that πn+1 could share with another path would be 0si for 2 ≤ i ≤ n. But none of these appear on 
πn+1 because, except for their shared endpoint, R1 is vertex disjoint from all the other Ri’s. 

This proves that P (n + 1) holds in case 2, and therefore holds in all cases, which completes the 
proof by induction. � 

Note that this proof implicitly defines a recursive procedure that, for any two vertices in Hn, finds 
between the two vertices n simple paths of length at most n + 1 that don’t cross. � 



MIT OpenCourseWare
http://ocw.mit.edu 

6.042J / 18.062J Mathematics for Computer Science 
Spring 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Problem 1
	Problem 2

