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Solutions to In-Class Problems Week 6, Wed. 

Problem 1. 
For each of the following pairs of graphs, either define an isomorphism between them, or prove 
that there is none. (We write ab as shorthand for a—b.) 

(a) 

G1 with V1 = {1, 2, 3, 4, 5, 6} , E1 = {12, 23, 34, 14, 15, 35, 45}


G2 with V2 = {1, 2, 3, 4, 5, 6} , E2 = {12, 23, 34, 45, 51, 24, 25}


Solution. Not isomorphic: G2 has a node, 2, of degree 4, but the maximum degree in G1 is 3. � 

(b) 

G3 with V3 = {1, 2, 3, 4, 5, 6} , E3 = {12, 23, 34, 14, 45, 56, 26}


G4 with V4 = {a, b, c, d, e, f} , E4 = {ab, bc, cd, de, ae, ef, cf}


Solution. Isomorphic (two isomorphisms) with the vertex correspondences: 
1f, 2c, 3d, 4e, 5a, 6b 
or 1f, 2e, 3d, 4c, 5b, 6a 

(c) 

G5 with V5 = {a, b, c, d, e, f, g, h} , E5 = {ab, bc, cd, ad, ef, fg, gh, he, dh, bf}
G6 with V6 = {s, t, u, v, w, x, y, z} , E6 = {st, tu, uv, sv, wx, xy, yz, wz, sw, vz} 

Solution. Not isomorphic: they have the same number of vertices, edges, and set of vertex de
grees. But the degree 2 vertices of G1 are all adjacent to two degree 3 vertices, while the degree 2 
vertices of G2 are all adjacent to one degree 2 vertex and one degree 3 vertex. 

Problem 2.

Definition ??. A graph is connected iff there is a path between every pair of its vertices.


False Claim. If every vertex in a graph has positive degree, then the graph is connected. 

(a) Prove that this Claim is indeed false by providing a counterexample. 
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Solution. There are many counterexamples; here is one: 

(b) Since the Claim is false, there must be an logical mistake in the following bogus proof. Pin
point the first logical mistake (unjustified step) in the proof. 

Bogus proof. We prove the Claim above by induction. Let P (n) be the proposition that if every

vertex in an n-vertex graph has positive degree, then the graph is connected.


Base cases: (n ≤ 2). In a graph with 1 vertex, that vertex cannot have positive degree, so P (1)

holds vacuously.


P (2) holds because there is only one graph with two vertices of positive degree, namely, the graph

with an edge between the vertices, and this graph is connected.


Inductive step: We must show that P (n) implies P (n+1) for all n ≥ 2. Consider an n-vertex graph

in which every vertex has positive degree. By the assumption P (n), this graph is connected; that

is, there is a path between every pair of vertices. Now we add one more vertex x to obtain an

(n + 1)-vertex graph:


z

y

X

n − vertex graph

All that remains is to check that there is a path from x to every other vertex z. Since x has positive 
degree, there is an edge from x to some other vertex, y. Thus, we can obtain a path from x to z by 
going from x to y and then following the path from y to z. This proves P (n + 1). 

By the principle of induction, P (n) is true for all n ≥ 0, which proves the Claim. 

Solution. This one is tricky: the proof is actually a good proof of something else. The first error 
in the proof is only in the final statement of the inductive step: “This proves P (n + 1)”. 

The issue is that to prove P (n +1), every (n +1)-vertex positive-degree graph must be shown to be 
connected. But the proof doesn’t show this. Instead, it shows that every (n + 1)-vertex positive-
degree graph that can be built up by adding a vertex of positive degree to an n-vertex connected graph, is 
connected. 
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The problem is that not every (n + 1)-vertex positive-degree graph can be built up in this way. The 
counterexample above illustrates this: there is no way to build that 4-vertex positive-degree graph 
from a 3-vertex positive-degree graph. 

More generally, this is an example of “buildup error”. This error arises from a faulty assumption 
that every size n + 1 graph with some property can be “built up” in some particular way from a 
size n graph with the same property. (This assumption is correct for some properties, but incorrect 
for others— such as the one in the argument above.) 

One way to avoid an accidental build-up error is to use a “shrink down, grow back” process in 
the inductive step: start with a size n + 1 graph, remove a vertex (or edge), apply the inductive 
hypothesis P (n) to the smaller graph, and then add back the vertex (or edge) and argue that 
P (n + 1) holds. Let’s see what would have happened if we’d tried to prove the claim above by 
this method: 

Inductive step: We must show that P (n) implies P (n + 1) for all n ≥ 1. Consider an (n + 1)-vertex 
graph G in which every vertex has degree at least 1. Remove an arbitrary vertex v, leaving an 
n-vertex graph G� in which every vertex has degree... uh-oh! 

The reduced graph G� might contain a vertex of degree 0, making the inductive hypothesis P (n) 
inapplicable! We are stuck— and properly so, since the claim is false! � 

Problem 3. (a) Prove that in every graph, there are an even number of vertices of odd degree. 

Hint: The Handshaking Lemma ??. 

Solution. Proof. Partitioning the vertices into those of even degree and those of odd degree, we 
know � � � 

d(v) = d(v) + d(v) 
v∈V d(v) is even d(v) is odd 

By the Handshaking Lemma, the value of the lefthand side of this equation equals twice the num
ber of edges, and so is even. The first summand on the righthand side is even since it is a sum 
of even values. So the second summand on the righthand side must also be even. But since it is 
entirely a sum of odd values, it must must contain an even number of terms. That is, there must 
be an even number of vertices with odd degree. � 

(b) Conclude that at a party where some people shake hands, the number of people who shake 
hands an odd number of times is an even number. 

Solution. We can represent the people at the party by the vertices of a graph. If two people shake 
hands, then there is an edge between the corresponding vertices. So the degree of a vertex is the 
number of handshakes the corresponding person performed. The result in the first part of this 
problem now implies that there are an even number of odd-degree vertices, which translates into 
an even number of people who shook an odd number of hands. � 

(c) Call a sequence of two or more different people at the party a handshake sequence if, except 
for the last person, each person in the sequence has shaken hands with the next person in the 
sequence. 
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Suppose George was at the party and has shaken hands with an odd number of people. Explain 
why, starting with George, there must be a handshake sequence ending with a different person 
who has shaken an odd number of hands. 

Hint: Just look at the people at the ends of handshake sequences that start with George. 

Solution. The handshake graph between just the people at the ends of handshake sequences that 
start with George is a graph, so by part (b), it must have an even number of people who shake 
an odd number of hands. In particular, there must be at least one other person besides George, 
call him Harry, who has also shaken an odd number of hands. So the handshake sequence from 
George that ends with Harry is what we were looking for. � 
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