In-Class Problems Week 6, Mon.

Problem 1.

Four Students want separate assignments to four VI-A Companies. Here are their preference rankings:

Student	Companies			
Albert:	HP, Bellcore, AT&T, Draper			
Rich:	AT&T, Bellcore, Draper, HP			
Megumi:	HP, Draper, AT&T, Bellcore			
Justin:	Draper, AT&T, Bellcore, HP			
	_			
Company	Students			
AT&T:	Justin, Albert, Megumi, Rich			
Ballcoro	Mogumi Pich Albort Justin			

AT&T:	Justin, Albert, Megumi, Rich
Bellcore:	Megumi, Rich, Albert, Justin
HP:	Justin, Megumi, Albert, Rich
Draper:	Rich, Justin, Megumi, Albert

(a) Use the Mating Ritual to find *two* stable assignments of Students to Companies.

(b) Describe a simple procedure to determine whether any given stable marriage problem has a unique solution, that is, only one possible stable matching.

Problem 2.

A preserved invariant of the Mating ritual is:

For every girl, G, and every boy, B, if G is crossed off B's list, then G has a favorite suitor and she prefers him over B.

Use the invariant to prove that the Mating Algorithm produces stable marriages. (Don't look up the proof in the Notes or slides.)

Problem 3.

Suppose that Harry is one of the boys and Alice is one of the girls in the *Mating Ritual*. Which of the properties below are preserved invariants? Why?

a. Alice is the only girl on Harry's list.

Creative Commons 2010, Prof. Albert R. Meyer.

- b. There is a girl who does not have any boys serenading her.
- c. If Alice is not on Harry's list, then Alice has a suitor that she prefers to Harry.
- d. Alice is crossed off Harry's list and Harry prefers Alice to anyone he is serenading.
- e. If Alice is on Harry's list, then she prefers to Harry to any suitor she has.

Problem 4.

Consider a stable marriage problem with 4 boys and 4 girls and the following partial information about their preferences:

B1:	G1	G2	—	-
B2:	G2	G1	_	-
B3:	_	_	G4	G3
B4:	_	_	G3	G4
G1:	B2	B1	-	-
G2:	B1	B2	_	-
G3:	_	_	B3	B4
G4:	_	_	B4	B3

(a) Verify that

will be a stable matching whatever the unspecified preferences may be.

(b) Explain why the stable matching above is neither boy-optimal nor boy-pessimal and so will not be an outcome of the Mating Ritual.

(c) Describe how to define a set of marriage preferences among *n* boys and *n* girls which have at least $2^{n/2}$ stable assignments.

Hint: Arrange the boys into a list of n/2 pairs, and likewise arrange the girls into a list of n/2 pairs of girls. Choose preferences so that the *k*th pair of boys ranks the *k*th pair of girls just below the previous pairs of girls, and likewise for the *k*th pair of girls. Within the *k*th pairs, make sure each boy's first choice girl in the pair prefers the other boy in the pair.

⁽B1, G1), (B2, G2), (B3, G3), (B4, G4)

6.042J / 18.062J Mathematics for Computer Science Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.