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Solutions to In-Class Problems Week 5, Fri. 

Problem 1. 
The Massachusetts Turnpike Authority is concerned about the integrity of the new Zakim bridge. 
Their consulting architect has warned that the bridge may collapse if more than 1000 cars are on 
it at the same time. The Authority has also been warned by their traffic consultants that the rate 
of accidents from cars speeding across bridges has been increasing. 

Both to lighten traffic and to discourage speeding, the Authority has decided to make the bridge 
one-way and to put tolls at both ends of the bridge (don’t laugh, this is Massachusetts). So cars will 
pay tolls both on entering and exiting the bridge, but the tolls will be different. In particular, a 
car will pay $3 to enter onto the bridge and will pay $2 to exit. To be sure that there are never too 
many cars on the bridge, the Authority will let a car onto the bridge only if the difference between 
the amount of money currently at the entry toll booth minus the amount at the exit toll booth is 
strictly less than a certain threshold amount of $T0. 

The consultants have decided to model this scenario with a state machine whose states are triples 
of natural numbers, (A, B,C), where 

• A is an amount of money at the entry booth, 

• B is an amount of money at the exit booth, and 

• C is a number of cars on the bridge. 

Any state with C > 1000 is called a collapsed state, which the Authority dearly hopes to avoid. 
There will be no transition out of a collapsed state. 

Since the toll booth collectors may need to start off with some amount of money in order to make 
change, and there may also be some number of “official” cars already on the bridge when it is 
opened to the public, the consultants must be ready to analyze the system started at any uncol
lapsed state. So let A0 be the initial number of dollars at the entrance toll booth, B0 the initial 
number of dollars at the exit toll booth, and C0 ≤ 1000 the number of official cars on the bridge 
when it is opened. You should assume that even official cars pay tolls on exiting or entering the 
bridge after the bridge is opened. 

(a) Give a mathematical model of the Authority’s system for letting cars on and off the bridge by 
specifying a transition relation between states of the form (A, B,C) above. 

Solution. State (A, B,C) goes to state 

(i)	 (A + 3, B, C + 1), provided that A − B < T0 and C ≤ 1000. This transition models the case 
where a car enters the bridge. 
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(ii)	 (A, B + 2, C − 1), provided that 0 < C ≤ 1000. This transition models the case where a car 
leaves the bridge. 

Note that the condition for the first transition has C ≤ 1000 instead of C < 1000. A car can enter 
so long as it is not in the collapsed state (C > 1000). In other words, a car may still enter when 
C = 1000; and the next state will be a collapsed state with C = 1001 > 1000. 

(b)	 Characterize each of the following derived variables 

A, B,A + B, A − B, 3C − A, 2A − 3B, B + 3C, 2A − 3B − 6C, 2A − 2B − 3C 

as one of the following 

constant C 
strictly increasing SI 
strictly decreasing SD 
weakly increasing but not constant WI 
weakly decreasing but not constant WD 
none of the above N 

and briefly explain your reasoning. 

Solution. In every transition, at least one of A and B increases. So their sum is strictly increasing. 
2A − 3B can fluctuate, going up on (i) and down on (ii). 

The difference 3C − A doesn’t change under transitions of type (i), but decreases under transitions 
of type (ii); so is weakly decreasing. 

However, B+3C increases under transitions of type (i), but decreases under transitions of type (ii). 

On the other hand, 6C and 2A − 3B simultaneously increase by 6 under transition (i) or simulta
neously decrease by 6 under transition (ii), which makes their difference constant. 

Finally, under (i), 2A increases by 6, B is unchanged, and 3C increases by 3, so 2A − 2B − 3C 
increases by 6 − 3 = 3. However, under (ii), A is unchanged, 3C decreases by 3 and 2B increases 
by 4, so 2A − 2B − 3C decreases by −(−4) − 3 = 1. 
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The completed table follows. 

A W I 

B W I 

A + B SI 

A − B N 

3C − A W D 

2A − 3B N 

B + 3C N 

2A − 3B − 6C C 

2A − 2B − 3C N 

The Authority has asked their engineering consultants to determine T and to verify that this policy 
will keep the number of cars from exceeding 1000. 

The consultants reason that if C0 is the number of official cars on the bridge when it is opened, 
then an additional 1000 − C0 cars can be allowed on the bridge. So as long as A − B has not 
increased by 3(1000 − C0), there shouldn’t more than 1000 cars on the bridge. So they recommend 
defining 

T0 ::= 3(1000 − C0) + (A0 − B0), (1) 

where A0 is the initial number of dollars at the entrance toll booth, B0 is the initial number of 
dollars at the exit toll booth. 

(c) Use the results of part (b) to define a simple predicate, P , on states of the transition system 
which is satisfied by the start state, that is P (A0, B0, C0) holds, is not satisfied by any collapsed 
state, and is a preserved invariant of the system. Explain why your P has these properties. 

Solution. Let D0 ::= 2A0 − 3B0 − 6C0. 

Preserved Invariant: 

P (A, B, C) ::= [2A − 3B − 6C = D0] AND [C ≤ 1000]. 

Note that P (A0, B0, C0) is true because we know that C0 ≤ 1000, and it is not true in any collapsed 
state. To verify that P is preserved, suppose state (A, B,C) has a transition to (A�, B�, C �), and 
P (A, B,C) is true. We verify that P (A�, B�, C �) is true by considering the two kinds of transitions. 

Transition (i) (a car enters the bridge): so 

6C � = 6(C + 1) = 6C + 6 = (2A − 3B − D0) + 6 = 2(A + 3) − 3B − D0 = 2A� − 3B� − D0, 
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which implies that 

as required. 

2A� − 3B� − 6C � = D0, (2) 

Also, the transition is possible only if A − B < T0. But this implies 

6C � = 2A� − 3B� − D0 (by (2)) 
= 2(A� − B�) − B� − D0 

= 2((A + 3) − B) − B − D0 (since A� = A + 3, B� = B) 
= 2(A − B) − B − D0 + 6 

≤ 2(A − B) − B0 − D0 + 6 (since B is WI) 
≤ 2(T0 − 1) − B0 − D0 + 6 (since A − B ≤ T0 − 1) 
= 2[3(1000 − C0) + (A0 − B0)] − B0 − D0 + 4(by (1)) 
= 6000 − 6C0 + 2A0 − 3B0 − D0 + 4 

= 6004, 

and so C � ≤ �6004/6� = 1000, as required. 

Transition (ii) (a car leaves the bridge): so 

6C � = 6(C − 1) = 6C − 6 = 2A − 3B − 6 = 2A − 3(B + 2) = 2A� − 3B�. 

In addition, C � < C ≤ 1000 so C � ≤ 1000. � 

(d) A clever MIT intern working for the Turnpike Authority agrees that the Turnpike’s bridge 
management policy will be safe: the bridge will not collapse. But she warns her boss that the 
policy will lead to deadlock— a situation where traffic can’t move on the bridge even though the 
bridge has not collapsed. 

Explain more precisely in terms of system transitions what the intern means, and briefly, but 
clearly, justify her claim. 

Solution. The intern means that any long enough sequence of transitions will arrive at a state in 
which no transition is possible, even though there are no cars on the bridge. This happens because 
every time a car enters and then exits the bridge the value of A − B increases by 1. So after 3000 
cars have crossed the bridge, no further car can enter the bridge because 

A − B ≥ 3000 + A0 − B0 ≥ 3(1000 − C0) + (A0 − B0) = T0. 

After that, cars can only exit the bridge. So after at most 3000+1000 transitions, the system dead
locks with the bridge empty but no cars allowed onto the bridge. 

Problem 2. 
In some terms when 6.042 is not taught in a TEAL room, students sit in a square arrangement 
during recitations. An outbreak of beaver flu sometimes infects students in recitation; beaver flu 
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is a rare variant of bird flu that lasts forever, with symptoms including a yearning for more quizzes 
and the thrill of late night problem set sessions. 

Here is an example of a 6×6 recitation arrangement with the locations of infected students marked 
with an asterisk. 

∗ ∗ 
∗ 
∗ ∗ 

∗ 
∗ ∗ 

Outbreaks of infection spread rapidly step by step. A student is infected after a step if either 

• the student was infected at the previous step (since beaver flu lasts forever), or 

• the student was adjacent to at least two already-infected students at the previous step. 

Here adjacent means the students’ individual squares share an edge (front, back, left or right, but 
not diagonal). Thus, each student is adjacent to 2, 3 or 4 others. 

In the example, the infection spreads as shown below. 

∗ ∗ 
∗ 
∗ ∗ 

∗ 
∗ ∗ 

⇒ 

∗ ∗ ∗ 
∗ ∗ ∗ 
∗ ∗ ∗ 
∗ 
∗ ∗ 
∗ ∗ ∗ ∗ 

⇒ 

∗ ∗ ∗ ∗ 
∗ ∗ ∗ ∗ 
∗ ∗ ∗ ∗ 
∗ ∗ ∗ 
∗ ∗ ∗ 
∗ ∗ ∗ ∗ 

In this example, over the next few time-steps, all the students in class become infected. 

Theorem. If fewer than n students among those in an n × n arrangment are initially infected in a flu 
outbreak, then there will be at least one student who never gets infected in this outbreak, even if students 
attend all the lectures. 

Prove this theorem. 

Hint: Think of the state of an outbreak as an n×n square above, with asterisks indicating infection. 
The rules for the spread of infection then define the transitions of a state machine. Try to derive a 
weakly decreasing state variable that leads to a proof of this theorem. 

Solution. Proof. Define the perimeter of an infected set of students to be the number of edges with 
infection on exactly one side. Let ν be size (number of edges) in the perimeter. 

We claim that ν is a weakly decreasing variable. This follows because the perimeter changes after 
a transition only because some squares became newly infected. By the rules above, each newly-
infected square is adjacent to at least two previously-infected squares. Thus, for each newly-
infected square, at least two edges are removed from the perimeter of the infected region, and at 
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most two edges are added to the perimeter. Therefore, the perimeter of the infected region cannot 
increase. 

Now if an n × n grid is completely infected, then the perimeter of the infected region is 4n. Thus, 
the whole grid can become infected only if the perimeter is initially at least 4n. Since each square 
has perimeter 4, at least n squares must be infected initially for the whole grid to become infected. 

Problem 3. 
Start with 102 coins on a table, 98 showing heads and 4 showing tails. There are two ways to 
change the coins: 

(i) flip over any ten coins, or 

(ii) let n be the number of heads showing. Place n + 1 additional coins, all showing tails, on the 
table. 

For example, you might begin by flipping nine heads and one tail, yielding 90 heads and 12 tails, 
then add 91 tails, yielding 90 heads and 103 tails. 

(a) Model this situation as a state machine, carefully defining the set of states, the start state, and 
the possible state transitions. 

Solution. This can be modeled by a state machine. The state of the machine is the number of 
heads and tails. The start state is (98, 4), and the transitions are: 

(h, t)
(h − a + (10 − a), t + a − (10 − a)) for 10 ≤ h + t&0 ≤ a ≤ min (10, h). 

→ 
(h, t + h + 1). 

(b) Explain how to reach a state with exactly one tail showing. 

Solution. One way is to: 

1. Do operation 2 three times, yielding (98, 4 + 3 99) = (98, 301).· 
2. Repeat 30 times: Do operation 1 to flip 10 tails into heads. This will result in the state (398, 1), 

which is the desired state. 

(c) Define the following derived variables: 

C ::= the number of coins on the table, H ::= the number of heads, 
T ::= the number of tails, C2 ::= remainder(C/2), 

H2 ::= remainder(H/2), T2 ::= remainder(T /2). 

Which of these variables is
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1. strictly increasing 

Solution. NONE � 

2. weakly increasing 

Solution. C, H2 � 

3. strictly decreasing 

Solution. NONE � 

4. weakly decreasing 

Solution. H2 � 

5. constant 

Solution. H2 � 

(d) Prove that it is not possible to reach a state in which there is exactly one head showing. 

Solution. We claimed above that H2 is an invariant value, that is, it does not change under state 
transitions. To prove this, let (h, t) be a state with h even. For the next state, we have two cases to 
consider: 

1. The first operation is executed: (h, t) → (h − 2a + 10, t + 2a − 10). Since −2a + 10 is even, 
H2((h, t)) = H2(h − 2a + 10, t + 2a − 10). 

2. The second operation is executed: (h, t) (h, t + h + 1). The number of heads does not →
change in this case, so H2 does not change. 

Since the initial number of heads, 98, is even, that is, H2((98, 4)) = 0, the Invariant Method now 
implies that the number of heads in a reachable state is always even. But since one is odd, it is not 
possible to reach a state in which there is exactly one head showing. 
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