In-Class Problems Week 5, Fri.

Problem 1.

The Massachusetts Turnpike Authority is concerned about the integrity of the new Zakim bridge. Their consulting architect has warned that the bridge may collapse if more than 1000 cars are on it at the same time. The Authority has also been warned by their traffic consultants that the rate of accidents from cars speeding across bridges has been increasing.

Both to lighten traffic and to discourage speeding, the Authority has decided to make the bridge *one-way* and to put tolls at *both* ends of the bridge (don't laugh, this is Massachusetts). So cars will pay tolls both on entering and exiting the bridge, but the tolls will be different. In particular, a car will pay \$3 to enter onto the bridge and will pay \$2 to exit. To be sure that there are never too many cars on the bridge, the Authority will let a car onto the bridge only if the difference between the amount of money currently at the entry toll booth minus the amount at the exit toll booth is strictly less than a certain threshold amount of T_0 .

The consultants have decided to model this scenario with a state machine whose states are triples of natural numbers, (A, B, C) , where

- A is an amount of money at the entry booth,
- \bullet *B* is an amount of money at the exit booth, and
- C is a number of cars on the bridge.

Any state with C > 1000 is called a *collapsed* state, which the Authority dearly hopes to avoid. There will be no transition out of a collapsed state.

Since the toll booth collectors may need to start off with some amount of money in order to make change, and there may also be some number of "official" cars already on the bridge when it is opened to the public, the consultants must be ready to analyze the system started at *any* uncollapsed state. So let A_0 be the initial number of dollars at the entrance toll booth, B_0 the initial number of dollars at the exit toll booth, and $C_0 \le 1000$ the number of official cars on the bridge when it is opened. You should assume that even official cars pay tolls on exiting or entering the bridge after the bridge is opened.

(a) Give a mathematical model of the Authority's system for letting cars on and off the bridge by specifying a transition relation between states of the form (A, B, C) above.

(b) Characterize each of the following derived variables

 $A, B, A + B, A - B, 3C - A, 2A - 3B, B + 3C, 2A - 3B - 6C, 2A - 2B - 3C$

as one of the following

Creative Commons \bigcirc 2010, [Prof. Albert R. Meyer.](http://people.csail.mit.edu/meyer)

and briefly explain your reasoning.

The Authority has asked their engineering consultants to determine T and to verify that this policy will keep the number of cars from exceeding 1000.

The consultants reason that if C_0 is the number of official cars on the bridge when it is opened, then an additional 1000 − C_0 cars can be allowed on the bridge. So as long as $A - B$ has not increased by $3(1000 - C_0)$, there shouldn't more than 1000 cars on the bridge. So they recommend defining

$$
T_0 ::= 3(1000 - C_0) + (A_0 - B_0),
$$
\n⁽¹⁾

where A_0 is the initial number of dollars at the entrance toll booth, B_0 is the initial number of dollars at the exit toll booth.

(c) Use the results of part [\(b\)](#page-0-0) to define a simple predicate, P, on states of the transition system which is satisfied by the start state, that is $P(A_0, B_0, C_0)$ holds, is not satisfied by any collapsed state, and is a preserved invariant of the system. Explain why your P has these properties.

(d) A clever MIT intern working for the Turnpike Authority agrees that the Turnpike's bridge management policy will be *safe*: the bridge will not collapse. But she warns her boss that the policy will lead to *deadlock*— a situation where traffic can't move on the bridge even though the bridge has not collapsed.

Explain more precisely in terms of system transitions what the intern means, and briefly, but clearly, justify her claim.

Problem 2.

In some terms when 6.042 is not taught in a TEAL room, students sit in a square arrangement during recitations. An outbreak of beaver flu sometimes infects students in recitation; beaver flu is a rare variant of bird flu that lasts forever, with symptoms including a yearning for more quizzes and the thrill of late night problem set sessions.

Here is an example of a 6×6 recitation arrangement with the locations of infected students marked with an asterisk.

Outbreaks of infection spread rapidly step by step. A student is infected after a step if either

In-Class Problems Week 5, Fri. 3

- the student was infected at the previous step (since beaver flu lasts forever), or
- the student was adjacent to *at least two* already-infected students at the previous step.

Here *adjacent* means the students' individual squares share an edge (front, back, left or right, but *not* diagonal). Thus, each student is adjacent to 2, 3 or 4 others.

In the example, the infection spreads as shown below.

In this example, over the next few time-steps, all the students in class become infected.

Theorem. If fewer than *n* students among those in an $n \times n$ arrangment are initially infected in a flu *outbreak, then there will be at least one student who never gets infected in this outbreak, even if students attend all the lectures.*

Prove this theorem.

Hint: Think of the state of an outbreak as an $n \times n$ square above, with asterisks indicating infection. The rules for the spread of infection then define the transitions of a state machine. Try to derive a weakly decreasing state variable that leads to a proof of this theorem.

Problem 3.

Start with 102 coins on a table, 98 showing heads and 4 showing tails. There are two ways to change the coins:

- (i) flip over any ten coins, or
- (ii) let *n* be the number of heads showing. Place $n + 1$ additional coins, all showing tails, on the table.

For example, you might begin by flipping nine heads and one tail, yielding 90 heads and 12 tails, then add 91 tails, yielding 90 heads and 103 tails.

(a) Model this situation as a state machine, carefully defining the set of states, the start state, and the possible state transitions.

- **(b)** Explain how to reach a state with exactly one tail showing.
- **(c)** Define the following derived variables:

Which of these variables is

- 1. strictly increasing
- 2. weakly increasing
- 3. strictly decreasing
- 4. weakly decreasing
- 5. constant

(d) Prove that it is not possible to reach a state in which there is exactly one head showing.

6.042J / 18.062J Mathematics for Computer Science Spring 2010

For information about citing these materials or our Terms of Use, visit:<http://ocw.mit.edu/terms>.