In-Class Problems Week 4, Mon.

Problem 1.

Prove by induction:

$$1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n},$$
(1)

for all n > 1.

Problem 2. (a) Prove by induction that a $2^n \times 2^n$ courtyard with a 1×1 statue of Bill in *a corner* can be covered with L-shaped tiles. (Do not assume or reprove the (stronger) result of Theorem 6.1.2 that Bill can be placed anywhere. The point of this problem is to show a different induction hypothesis that works.)

(b) Use the result of part (a) to prove the original claim that there is a tiling with Bill in the middle.

Problem 3.

Find the flaw in the following bogus proof that $a^n = 1$ for all nonnegative integers n, whenever a is a nonzero real number.

Bogus proof. The proof is by induction on *n*, with hypothesis

$$P(n) ::= \forall k \le n. \, a^k = 1,$$

where k is a nonnegative integer valued variable.

Base Case: P(0) is equivalent to $a^0 = 1$, which is true by definition of a^0 . (By convention, this holds even if a = 0.)

Inductive Step: By induction hypothesis, $a^k = 1$ for all $k \in \mathbb{N}$ such that $k \leq n$. But then

$$a^{n+1} = \frac{a^n \cdot a^n}{a^{n-1}} = \frac{1 \cdot 1}{1} = 1,$$

which implies that P(n + 1) holds. It follows by induction that P(n) holds for all $n \in \mathbb{N}$, and in particular, $a^n = 1$ holds for all $n \in \mathbb{N}$.

Creative Commons 2010, Prof. Albert R. Meyer.

Problem 4.

Define the *potential*, p(S), of a stack of blocks, S, to be k(k-1)/2 where k is the number of blocks in S. Define the potential, p(A), of a set of stacks, A, to be the sum of the potentials of the stacks in A.

Generalize Theorem 6.2.2 about scores in the stacking game to show that for any set of stacks, A, if a sequence of moves starting with A leads to another set of stacks, B, then $p(A) \ge p(B)$, and the score for this sequence of moves is p(A) - p(B).

Hint: Try induction on the number of moves to get from *A* to *B*.

6.042J / 18.062J Mathematics for Computer Science Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.