
�

Massachusetts Institute of Technology
6.042J/18.062J, Spring ’10: Mathematics for Computer Science February 19
Prof. Albert R. Meyer revised February 19, 2010, 1400 minutes

Solutions to In-Class Problems Week 3, Fri.

Problem 1.
Let’s refer to a programming procedure (written in your favorite programming language —C++,
or Java, or Python, . . .) as a string procedure when it is applicable to data of type string and only
returns values of type boolean. When a string procedure, P , applied to a string, s, returns
True, we’ll say that P recognizes s. If R is the set of strings that P recognizes, we’ll call P a
recognizer for R.

(a) Describe how a recognizer would work for the set of strings containing only lower case Ro
man letter —a,b,...,z —such that each letter occurs twice in a row. For example, aaccaabbzz,
is such a string, but abb, 00bb, AAbb, and a are not. (Even better, actually write a recognizer pro
cedure in your favorite programming language).

Solution. All the standard programming languages have built-in operations for scanning the
characters in a string. So simply write a procedure that checks an input string left to right, verify
ing that successive pairs of characters in the string are duplicated, lowercase roman characters.

ACTUAL PROGRAM TBA

A set of strings is called recognizable if there is a recognizer procedure for it.

When you actually program a procedure, you have to type the program text into a computer
system. This means that every procedure is described by some string of typed characters. If a
string, s, is actually the typed description of some string procedure, let’s refer to that procedure
as Ps. You can think of Ps as the result of compiling s.1

In fact, it will be helpful to associate every string, s, with a procedure, Ps; we can do this by
defining Ps to be some fixed string procedure —it doesn’t matter which one —whenever s is not
the typed description of an actual procedure that can be applied to string s. The result of this
is that we have now defined a total function, f , mapping every string, s, to the set, f(s), of
strings recognized by Ps. That is we have a total function,

f : string → P(string). (1)

(b) Explain why the actual range of f is the set of all recognizable sets of strings.

Creative Commons 2010, Prof. Albert R. Meyer.
1The string, s, and the procedure, Ps, have to be distinguished to avoid a type error: you can’t apply a string to

string. For example, let s be the string that you wrote as your program to answer part (a). Applying s to a string
argument, say oorrmm, should throw a type exception; what you need to do is apply the procedure Ps to oorrmm. This
should result in a returned value True, since oorrmm consists of three pairs of lowercase roman letters

http://web.mit.edu/
http://courses.csail.mit.edu/6.042/spring10
http://people.csail.mit.edu/meyer
http://people.csail.mit.edu/meyer

�

2 Solutions to In-Class Problems Week 3, Fri.

Solution. Since f(s) is the set of strings recogized by Ps, everything in range (f) is a recogizable
set. Conversely, every recogizable set is in range (f): if R is a recognizable set, then by definition,
there is a procedure, P , that recognizes R. So if r is the input program from which P was compiled,
then R = f(r). �

This is exactly the set up we need to apply the reasoning behind Russell’s Paradox to define a set
that is not in the range of f , that is, a set of strings, N , that is not recognizable.

(c) Let
N ::= {s ∈ string | s /∈ f(s)} .

Prove that N is not recognizable.

Hint: Similar to Russell’s paradox or the proof of Theorem ??.

Solution. By definition of N ,
s ∈ N iff s /∈ f(s). (2)

for every string, s.

Now assume to the contrary that N was recognizable by some string procedure. This procedure

must have a string, w, that describes it, so we have

s ∈ N iff Pw applied to s returns True,

iff s ∈ f(w) (by def. of f) (3)

for all string’s s.

Combining (2) and (3), we have that for every string, s,

s /∈ f(s) iff s ∈ f(w), (4)

for all string’s s.

Now letting s be w in (4), we reach the contradiction

w /∈ f(w) iff w ∈ f(w).

This contradiction implies that the assumption that N was recognizable must be false.

(d) Discuss what the conclusion of part (c) implies about the possibility of writing “program
analyzers” that take programs as inputs and analyze their behavior.

Solution. Let’s call a programming procedure “self-unconscious” if it does not return True when
applied to its own textual definition.

Rephrased informally, the conclusion of part (c) says that it is logically impossible to design a
general program analyzer, which takes as input the (textual definition) of an arbitrary program,
and recognizes when the program is self-unconscious. This implies that it is impossible to write
a program which does the more general analysis of how an arbitrary procedure behaves when
applied to some given arguments.

3 Solutions to In-Class Problems Week 3, Fri.

BTW, it is feasible to write a general procedure that recognizes when an arbitrary input procedure
does return a value when appiled to the string that describes it —that is, when the procedure is
self-conscious. The general procedure appllied to input s just simulates Ps applied to s. In other
words, this general procedure just acts like a virtual machine simulator or “interpreter” for the
programming language of its input programs.

It’s also important to recognize that there’s no hope of getting around this by switching program
ming languages. For example, by part (c), no C++ program can analyze arbitrary C++ programs,
and no Java program can analyze Java programs, but you might wonder if a language like C++,
which allows more intimate manipulation of computer memory than Java, might therefore allow
a C++ program to analyze general Java programs. But there is no loophole here: since it’s possible
to write a Java program that is a simulator/interpreter for C++ programs, if a C++ program could
analyze Java programs, so could the Java program that simulated the C++ program, contradict
ing (c).

It’s a different story if we think about the practical possibility of writing programming analyzers.
The fact that it’s logically impossible to write analyzers for completely general programs does not
mean that you can’t do a very good job analyzing interesting programs that come up in practice.
In fact these “interesting” programs are commonly intended to be analyzable in order to confirm
that they do what they’re supposed to do.

So it’s not clear how much of a hurdle this theoretical limitation implies in practice. What the
theory does provide is some perspective on claims about general analysis methods for programs.
The theory tells us that people who make such claims either

•	 are exaggerating the power (if any) of their methods —say to get a grant or make a sale, or

•	 are trying to keep things simple by not going into technical limitations they’re aware of, or

•	 perhaps most commonly, are so excited about some useful practical successes of their meth
ods, that they haven’t bothered to think about their limitations.

So from now on, if you hear people making claims about completely general program analy
sis/verification/optimization methods, you’ll know they can’t be telling the whole story. �

Problem 2.
The Axiom of Choice can say that if s is a set whose members are nonempty sets that are pairwise
disjoint —that is no two sets in s have an element in common —then there is a set, c, consisting of
exactly one element from each set in s.

In formal logic, we could describe s with the formula,

pairwise-disjoint(s) ::= ∀x ∈ s. x =� ∅QAND∀x, y ∈ s.(x =� y) IMPLIES (x ∩ y = ∅).

Similarly we could describe c with the formula

choice-set(c, s) ::= ∀x ∈ s. ∃!z. z ∈ c ∩ x.

Here “∃!z.” is fairly standard notation for “there exists a unique z.

Now we can give the formal definition:

�

4 Solutions to In-Class Problems Week 3, Fri.

Definition (Axiom of Choice).

∀s. pairwise-disjoint(s) IMPLIES ∃c. choice-set(c, s).

The only issue here is that Set Theory is technically supposed to be expressed in terms of pure
formulas in the language of sets, which means formula that uses only the membership relation,
∈, propositional connectives, and the two quantifies ∀ and ∃. Verify that the Axiom of Choice can
be expressed as a pure formula, by explaining how to replace all impure subformulas above with
equivalent pure formulas.

For example, the formula x = y could be replaced with the pure formula ∀z. z ∈ x IFF z ∈ y.

Solution. Here is how the impure subformulas used in the above definition of the Axiom of
Choice can be translated into pure formulas:

x =� ∅translatesinto∃y/ y ∈ x.

[x ∩ y = ∅]translatesinto NOT(∃z. z ∈ x AND z ∈ y).

[z ∈ x ∩ y]translatesintoz ∈ x AND z ∈ y.

∃!z. P (z)translatesinto∃z. P (z) AND ∀w. P (w) IMPLIES w = z.

This last formula is not pure because it uses =, but this is ok since we know it can be replaced by
a pure formula.

Problem 3.
There are lots of different sizes of infinite sets. For example, starting with the infinite set, N, of
nonnegative integers, we can build the infinite sequence of sets

N, P(N), P(P(N)), P(P(P(N))),

By Theorem ?? from the Notes, each of these sets is strictly bigger2 than all the preceding ones. But
that’s not all: if we let U be the union of the sequence of sets above, then U is strictly bigger than
every set in the sequence! Prove this:

Lemma. Let Pn(N) be the nth set in the sequence, and

∞
U ::= Pn(N).

n=0

Then

2Reminder: set A is strictly bigger than set B just means that A surj B, but NOT(B surj A).

�

5 Solutions to In-Class Problems Week 3, Fri.

1. U surj Pn(N) for every n ∈ N, but

2. there is no n ∈ N for which Pn(N) surj U .

Now of course, we could take U, P(U), P(P(U)), . . . and can keep on indefinitely building still
bigger infinities.

Solution. Everything follows from a trivial observation: if A ⊇ B, then A surj B. (Why is this
trivial?)

So since U ⊇ Pn(N), we have U surj Pn(N), which proves 1.

To prove 2, assume to the contrary that Pm(N) surj U . Now we know from 1 that U surj Pm+1(N).
But this implies that

Pm(N) surj Pm+1(N) = P(Pm(N)),

contradicting the fact that, by Theorem ??, a power set of Pm(N)) is “strictly bigger” than Pm(N)).

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Problem 1
	Problem 2
	Problem 3

