
Massachusetts Institute of Technology
6.042J/18.062J, Spring ’10: Mathematics for Computer Science February 19
Prof. Albert R. Meyer revised February 19, 2010, 1407 minutes

In-Class Problems Week 3, Fri.

Problem 1.
Let’s refer to a programming procedure (written in your favorite programming language —C++,
or Java, or Python, . . .) as a string procedure when it is applicable to data of type string and only
returns values of type boolean. When a string procedure, P , applied to a string, s, returns
True, we’ll say that P recognizes s. If R is the set of strings that P recognizes, we’ll call P a
recognizer for R.

(a) Describe how a recognizer would work for the set of strings containing only lower case Ro­
man letter —a,b,...,z —such that each letter occurs twice in a row. For example, aaccaabbzz,
is such a string, but abb, 00bb, AAbb, and a are not. (Even better, actually write a recognizer pro­
cedure in your favorite programming language).

A set of strings is called recognizable if there is a recognizer procedure for it.

When you actually program a procedure, you have to type the program text into a computer
system. This means that every procedure is described by some string of typed characters. If a
string, s, is actually the typed description of some string procedure, let’s refer to that procedure
as Ps. You can think of Ps as the result of compiling s.1

In fact, it will be helpful to associate every string, s, with a procedure, Ps; we can do this by
defining Ps to be some fixed string procedure —it doesn’t matter which one —whenever s is not
the typed description of an actual procedure that can be applied to string s. The result of this
is that we have now defined a total function, f , mapping every string, s, to the set, f(s), of
strings recognized by Ps. That is we have a total function,

f : string → P(string). (1)

(b) Explain why the actual range of f is the set of all recognizable sets of strings.

This is exactly the set up we need to apply the reasoning behind Russell’s Paradox to define a set
that is not in the range of f , that is, a set of strings, N , that is not recognizable.

(c) Let
N ::= {s ∈ string | s /∈ f(s)} .

Prove that N is not recognizable.

Hint: Similar to Russell’s paradox or the proof of Theorem ??.

Creative Commons 2010, Prof. Albert R. Meyer.
1The string, s, and the procedure, Ps, have to be distinguished to avoid a type error: you can’t apply a string to

string. For example, let s be the string that you wrote as your program to answer part (a). Applying s to a string
argument, say oorrmm, should throw a type exception; what you need to do is apply the procedure Ps to oorrmm. This
should result in a returned value True, since oorrmm consists of three pairs of lowercase roman letters

http://web.mit.edu/
http://courses.csail.mit.edu/6.042/spring10
http://people.csail.mit.edu/meyer
http://people.csail.mit.edu/meyer

2 In-Class Problems Week 3, Fri.

(d) Discuss what the conclusion of part (c) implies about the possibility of writing “program
analyzers” that take programs as inputs and analyze their behavior.

Problem 2.
The Axiom of Choice can say that if s is a set whose members are nonempty sets that are pairwise
disjoint —that is no two sets in s have an element in common —then there is a set, c, consisting of
exactly one element from each set in s.

In formal logic, we could describe s with the formula,

pairwise-disjoint(s) ::= ∀x ∈ s. x =� ∅QAND∀x, y ∈ s.(x =� y) IMPLIES (x ∩ y = ∅).

Similarly we could describe c with the formula

choice-set(c, s) ::= ∀x ∈ s. ∃!z. z ∈ c ∩ x.

Here “∃!z.” is fairly standard notation for “there exists a unique z.

Now we can give the formal definition:

Definition (Axiom of Choice).

∀s. pairwise-disjoint(s) IMPLIES ∃c. choice-set(c, s).

The only issue here is that Set Theory is technically supposed to be expressed in terms of pure
formulas in the language of sets, which means formula that uses only the membership relation,
∈, propositional connectives, and the two quantifies ∀ and ∃. Verify that the Axiom of Choice can
be expressed as a pure formula, by explaining how to replace all impure subformulas above with
equivalent pure formulas.

For example, the formula x = y could be replaced with the pure formula ∀z. z ∈ x IFF z ∈ y.

Problem 3.
There are lots of different sizes of infinite sets. For example, starting with the infinite set, N, of
nonnegative integers, we can build the infinite sequence of sets

N, P(N), P(P(N)), P(P(P(N))),

By Theorem ?? from the Notes, each of these sets is strictly bigger2 than all the preceding ones. But
that’s not all: if we let U be the union of the sequence of sets above, then U is strictly bigger than
every set in the sequence! Prove this:

Lemma. Let Pn(N) be the nth set in the sequence, and

∞
U ::= Pn(N).

n=0

Then

2Reminder: set A is strictly bigger than set B just means that A surj B, but NOT(B surj A).

3 In-Class Problems Week 3, Fri.

1. U surj Pn(N) for every n ∈ N, but

2. there is no n ∈ N for which Pn(N) surj U .

Now of course, we could take U, P(U), P(P(U)), . . . and can keep on indefinitely building still
bigger infinities.

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Problem 1
	Problem 2
	Problem 3

