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Solutions to In-Class Problems Week 2, Fri.

Problem 1.
Set Formulas and Propositional Formulas.

(@) Verify that the propositional formula (P AND NOT(Q®)) OR (P AND Q) is equivalent to P.

Solution. There is a simple verification by truth table with 4 rows which we omit.

There is also a simple cases argument: if ) is T, then the formula simplifies to (P AND F) OR
(P AND T') which further simplifies to (F OR P) which is equivalent to P.

Otherwise, if ) is F, then the formula simplifies to (P AND T) OR (P AND F) which is likewise
equivalent to P. [

(b) Use part (a) to prove that
A=(A-B)U(ANB)
for any sets, A, B, where

A—B:={a€A|a¢ B}.

Solution. We need only show that the two sets have the same elements, that is « is in one set iff
is in the other set, for any =.

Let Pbex € Aand Q be x € B. Then

z€(A—B)U(ANB)

iff r€(A—B)OR z€ (ANB) (by def of U)
iff (re€ A AND NOT(xz € B)) OR (x € A AND z € B) (by def of Nand —)
iff (P AND NOT(Q)) OR (P AND Q) (by def of P and Q)
iff P (by part (a))
iff z€A (by def of P).
|
Problem 2.

Subset take-away! is a two player game involving a fixed finite set, A. Players alternately choose
nonempty subsets of A with the conditions that a player may not choose

e the whole set 4, or
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¢ any set containing a set that was named earlier.

The first player who is unable to move loses the game.

For example, if A is {1}, then there are no legal moves and the second player wins. If A is {1, 2},
then the only legal moves are {1} and {2}. Each is a good reply to the other, and so once again the
second player wins.

The first interesting case is when A has three elements. This time, if the first player picks a subset
with one element, the second player picks the subset with the other two elements. If the first
player picks a subset with two elements, the second player picks the subset whose sole member
is the third element. Both cases produce positions equivalent to the starting position when A has
two elements, and thus leads to a win for the second player.

Verify that when A has four elements, the second player still has a winning strategy.

Solution. There are way too many cases to work out by hand if we tried to list all possible games.
But the elements of A all behave the same, so we can cut to a small number of cases using the fact
that permuting around the elements of A in any game yields another possible game. We can do
this by not mentioning specific elements of A4, but instead using the variables a, b, c, d whose values
will be the four elements of A.

We consider two cases for the move of the Player 1 when the game starts:

1. Player 1 chooses a one element or a three element subset. Then Player 2 should choose the
complement of Player one’s choice. The game then becomes the same as playing the n = 3
game on the three element set chosen in this first round, where we know Player 2 has a
winning strategy.

2. Player 1 chooses a subset of 2 elements. Let a, b be these elements, that is, the first move is
{a,b}. Player 2 should choose the complement, {c, d}, of Player 1’s choice. We then have the
following subcases:

(a) Player 1’s second move is a one element subset, {a}. Player 2 should choose {b}. The
game is then reduced to the two element game on {c, d} where Player 2 has a winning
strategy.

(b) Player 1’s second move is a two element subset, {a, c}. Player 2 should choose its com-
plement, {b, d}. This leads to two subsubcases:

i. Player 1’s third move is one of the remaining sets of size two, {a, d}. Player 2 should
choose its complement, {b, c}. The remaining possible moves are the four sets of
size 1, where the Player 2 clearly wins after two more rounds.

ii. Player 1’s third move is a one element set, {a}. Player 2 should choose {b}. The
game is then reduced to the case two element game on {c, d} where Player 2 has a
winning strategy.

So in all cases, Player 2 has a winning strategy in the Gale game for n = 4. n

?David Gale worked out some of the properties of this game and conjectured that the second player wins the game
for any set A. This remains an open problem.
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Problem 3.
Define a surjection relation, surj, on sets by the rule

Definition. A surj B iff there is a surjective function from A to B.

Define the injection relation, inj, on sets by the rule
Definition. A inj B iff there is a total injective relation from A to B.
(a) Prove that if A surj B and B surj C, then A surj C.

Solution. By definition of surj, there are surjective functions, F: A - Band G : B — C.

Let H ::= G o F be the function equal to the composition of G and F, that is
H(a) ::== G(F(a)).

We show that H is surjective, which will complete the proof. So suppose ¢ € C. Then since G is
a surjection, ¢ = G(b) for some b € B. Likewise, b = F(a) for some a € A. Hence ¢ = G(F'(a)) =
H(a), proving that c is in the range of H, as required. [

(b) Explain why A surj B iff B inj A.

Solution. Proof. (right to left): By definition of inj, there is a total injective relation, R : B — A.
But this implies that R~! is a surjective function from A to B.

(left to right): By definition of surj, there is a surjective function, F' : A — B. But this implies that
F~1is a total injective relation from 4 to B. [ |

(c) Conclude from (a) and (b) that if A inj B and B inj C, then A inj C.

Solution. From (b) and (a) we have that if C' inj B and B inj A, then C inj A, so just switch the
names A and C. |
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