
Massachusetts Institute of Technology 
6.042J/18.062J, Spring ’10: Mathematics for Computer Science February 10 
Prof. Albert R. Meyer revised February 3, 2010, 3 minutes 

Solutions to In-Class Problems Week 2, Wed. 

Problem 1. 
Prove by truth table that OR distributes over AND: 

[P OR (Q AND R)] is equivalent to [(P OR Q) AND (P OR R)] (1) 

Solution. 
[P OR (Q AND R)] 
T T T T T 
T T T F F 
T T F F T 
T T F F F 
F T T T T 
F F T F F 
F F F F T 
F F F F F 

[(P OR Q) AND (P OR R)] 
T T T T T T T 
T T T T T T F 
T T F T T T T 
T T F T T T F 
F T T T F T T 
F T T F F F F 
F F F F F T T 
F F F F F F F 

The two columns for the principle operator (underlined) are the same, and therefore the corre

sponding propositional formulas are equivalent. �


Creative Commons 2010, Prof. Albert R. Meyer. 

http://web.mit.edu/
http://courses.csail.mit.edu/6.042/spring10
http://people.csail.mit.edu/meyer
http://people.csail.mit.edu/meyer


2 Solutions to In-Class Problems Week 2, Wed. 

Problem 2. 
This problem1 examines whether the following specifications are satisfiable: 

1. If the file system is not locked, then 

(a) new messages will be queued. 

(b) new messages will be sent to the messages buffer. 

(c) the system is functioning normally, and conversely, if the system is functioning nor
mally, then the file system is not locked. 

2. If new messages are not queued, then they will be sent to the messages buffer. 

3. New messages will not be sent to the message buffer. 

(a) Begin by translating the five specifications into propositional formulas using four proposi
tional variables: 

L 

Q 

B 

N 

::= 

::= 

::= 

::= 

file system locked, 

new messages are queued, 

new messages are sent to the message buff
system functioning normally. 

er, 

Solution. The translations of the specifications are: 

NOT L IMPLIES Q (Spec. 1.(a)) 
NOT L IMPLIES B (Spec. 1.(b)) 

NOT LIFFN (Spec. 1.(c)) 
NOT Q IMPLIES B (Spec. 2.) 

NOT B (Spec. 3.) 

� 

(b) Demonstrate that this set of specifications is satisfiable by describing a single truth assignment 
for the variables L, Q,B, N and verifying that under this assignment, all the specifications are true. 

Solution. An assignment that works is 

L = True

N = False

Q = True

B = False.


To find this assignment, we could have started constructing the sixteen line truth table —one line 
for each way of assigning truth values to the four variables L, N , Q, and B —and calculated the 

1From Rosen, 5th edition, Exercise 1.1.36 



� 

3 Solutions to In-Class Problems Week 2, Wed. 

truth value of the AND of all the five specifications under that assignment, continuing until we 
got one that made the AND-formula true. 

If for every one of the sixteen possible truth assignments, the AND-formula was false, then the 
system is not satisfiable. � 

(c) Argue that the assignment determined in part (b) is the only one that does the job. 

Solution. We can avoid calculating all 16 rows of the full truthtable calculation suggested in the 
previous solution to part (b) by reasoning as follows. In any truth assignment that makes all five 
specifications true, 

• B must be false, or the last specification, (Spec. 3.), would be false. 

• Given that B is false, (Spec. 2.) and (Spec. 1.(b)) can be true only if Q and L are true. 

• Given that L is true, (Spec. 1.(c)) can be true only if N is false. 

Thus, in order for all five specifications to be true, the assignment must be: 

L = True

N = False

Q = True

B = False.


Problem 3. 
When the Mathematician says to his student, “If a function is not continuous, then it is not differ
entiable,” then letting D stand for “differentiable” and C for continuous, the only proper transla
tion of the Mathematician’s statement would be 

NOT(C) IMPLIES NOT(D), 

or equivalently, 
D IMPLIES C. 

But when a Mother says to her son, “If you don’t do your homework, then you can’t watch TV,” 
then letting T stand for “watch TV” and H for “do your homework,” a reasonable translation of 
the Mother’s statement would be 

NOT(H) IFF NOT(T ), 

or equivalently, 
H IFF T. 

Explain why it is reasonable to translate these two IF-THEN statements in different ways into 
propositional formulas. 



� 

4 Solutions to In-Class Problems Week 2, Wed. 

Solution. We know that a differentiable function must be continuous, so when a function is not 
continuous, it is also not differentiable. Now Mathematicians use IMPLIES in the technical way 
given by its truth table. In particular, if a function is continuous then to a Mathematician, the 
implication 

NOT(C) IMPLIES NOT(D), 

is automatically true since the hypothesis (left hand side of the IMPLIES) is false. So whether or 
not continuity holds, the Mathematician could comfortably assert the IMPLIES statement knowing 
it is correct. 

And of course a Mathematician does not mean IFF, since she knows a function that is not differen
tiable may well be continuous. 

On the other hand, while the Mother certainly means that her son cannot watch TV if he does not 
do his homework, both she and her son most likely understand that if he does do his homework, 
then he will be allowed watch TV. In this case, even though the Mother uses an IF-THEN phrasing, 
she really means IFF. 

On the other hand, circumstances in the household might be that the boy may watch TV when he 
has not only done his homework, but also cleaned up his room. In this case, just doing homework 
would not imply being allowed to watch TV –the boy won’t be allowed to watch TV if he hasn’t 
cleaned his room, even if he has done his homework. 

The general point here is that semantics (meaning) trumps syntax (sentence structure): even 
though the Mathematician’s and Mother’s statements have the same structure, their meaning may 
warrant different translations into precise logical language. 

Problem 4. 
Propositional logic comes up in digital circuit design using the convention that T corresponds to 
1 and F to 0. A simple example is a 2-bit half-adder circuit. This circuit has 3 binary inputs, a1, a0 

and b, and 3 binary outputs, c, o1, o0. The 2-bit word a1a0 gives the binary representation of an 
integer, s between 0 and 3. The 3-bit word co1o0 gives the binary representation of s + b. The 
output c is called the final carry bit. 

So if s and b were both 1, then the value of a1a0 would be 01 and the value of the output co1o0 

would 010, namely, the 3-bit binary representation of 1 + 1. 

In fact, the final carry bit equals 1 only when all three binary inputs are 1, that is, when s = 3 and 
b = 1. In that case, the value of co1o0 is 100, namely, the binary representation of 3 + 1. 

This 2-bit half-adder could be described by the following formulas: 

c0 = b 

o0 = a0 XOR c0 

c1 = a0 AND c0 the carry into column 1 
o1 = a1 XOR c1 

c2 = a1 AND c1 the carry into column 2 
c = c2. 



� 

� 

� 

5 Solutions to In-Class Problems Week 2, Wed. 

(a) Generalize the above construction of a 2-bit half-adder to an n + 1 bit half-adder with inputs 
an, . . . , a1, a0 and b for arbitrary n ≥ 0. That is, give simple formulas for oi and ci for 0 ≤ i ≤ n +1, 
where ci is the carry into column i and c = cn+1. 

Solution. The n +1-bit word an . . . a1a0 will be the binary representation of an integer, s, between 
0 and 2n+1 − 1. The circuit will have n + 2 outputs c, on, . . . , o1, o0 where the n + 2-bit word 
con . . . o1o0 gives the binary representation of s + b. 

Here are some simple formulas that define such a half-adder: 

c0 = b, 

oi = ai XOR ci for 0 ≤ i ≤ n, 

ci+1 = ai AND ci for 0 ≤ i ≤ n, 

c = cn+1. 

(b) Write similar definitions for the digits and carries in the sum of two n + 1-bit binary numbers 
an . . . a1a0 and bn . . . b1b0. 

Solution. Define 

c0 = 0 

oi = ai XOR bi XOR ci for 0 ≤ i ≤ n, 

ci+1 = (ai AND bi) OR 

(ai AND ci) OR (bi AND ci) for 0 ≤ i ≤ n, 

c = cn+1. 

Visualized as digital circuits, the above adders consist of a sequence of single-digit half-adders or 
adders strung together in series. These circuits mimic ordinary pencil-and-paper addition, where 
a carry into a column is calculated directly from the carry into the previous column, and the carries 
have to ripple across all the columns before the carry into the final column is determined. Circuits 
with this design are called “ripple-carry” adders. Ripple-carry adders are easy to understand and 
remember and require a nearly minimal number of operations. But the higher-order output bits 
and the final carry take time proportional to n to reach their final values. 

(c) How many of each of the propositional operations does your adder from part (b) use to cal
culate the sum? 

Solution. The scheme given in the solution to part (b) uses 3(n + 1) AND’s, 2(n + 1) XOR’s, and 
2(n + 1) OR’s for a total of 7(n + 1) operations.2 

2Because c0 is always 0, you could skip all the operations involving it. Then the counts are 3n + 1 AND’s, 2n + 1 
XOR’s, and 2n OR’s for a total of 7n + 2 operations. 



6 Solutions to In-Class Problems Week 2, Wed. 

The Propositional Operations 

P NOT P 
T F 
F T 

P Q P AND Q 
T T T 
T F F 
F T F 
F F F 

P Q P OR Q 
T T T 
T F T 
F T T 
F F F 

P Q P XOR Q 
T T F 
T F T 
F T T 
F F F 

P Q P IMPLIES Q 
T T T 
T F F 
F T T 
F F T 

P Q P IFF Q 
T T T 
T F F 
F T F 
F F T 



MIT OpenCourseWare
http://ocw.mit.edu 

6.042J / 18.062J Mathematics for Computer Science 
Spring 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Problem 1
	Problem 2
	Problem 3
	Problem 4

