
Massachusetts Institute of Technology 
6.042J/18.062J, Spring ’10: Mathematics for Computer Science February 10 
Prof. Albert R. Meyer revised February 3, 2010, 2 minutes 

In-Class Problems Week 2, Wed. 

Problem 1. 
Prove by truth table that OR distributes over AND: 

[P OR (Q AND R)] is equivalent to [(P OR Q) AND (P OR R)] (1) 

Problem 2. 
This problem1 examines whether the following specifications are satisfiable: 

1. If the file system is not locked, then 

(a) new messages will be queued. 

(b) new messages will be sent to the messages buffer. 

(c) the system is functioning normally, and conversely, if the system is functioning nor­
mally, then the file system is not locked. 

2. If new messages are not queued, then they will be sent to the messages buffer. 

3. New messages will not be sent to the message buffer. 

(a) Begin by translating the five specifications into propositional formulas using four proposi­
tional variables: 

L ::= file system locked,


Q ::= new messages are queued,


B ::= new messages are sent to the message buffer,

N ::= system functioning normally.


(b) Demonstrate that this set of specifications is satisfiable by describing a single truth assignment 
for the variables L, Q,B, N and verifying that under this assignment, all the specifications are true. 

(c) Argue that the assignment determined in part (b) is the only one that does the job. 

Creative Commons 2010, Prof. Albert R. Meyer.

1From Rosen, 5th edition, Exercise 1.1.36


http://web.mit.edu/
http://courses.csail.mit.edu/6.042/spring10
http://people.csail.mit.edu/meyer
http://people.csail.mit.edu/meyer


2 In-Class Problems Week 2, Wed. 

Problem 3. 
When the Mathematician says to his student, “If a function is not continuous, then it is not differ­
entiable,” then letting D stand for “differentiable” and C for continuous, the only proper transla­
tion of the Mathematician’s statement would be 

NOT(C) IMPLIES NOT(D), 

or equivalently, 
D IMPLIES C. 

But when a Mother says to her son, “If you don’t do your homework, then you can’t watch TV,” 
then letting T stand for “watch TV” and H for “do your homework,” a reasonable translation of 
the Mother’s statement would be 

NOT(H) IFF NOT(T ), 

or equivalently, 
H IFF T. 

Explain why it is reasonable to translate these two IF-THEN statements in different ways into 
propositional formulas. 

Problem 4. 
Propositional logic comes up in digital circuit design using the convention that T corresponds to 
1 and F to 0. A simple example is a 2-bit half-adder circuit. This circuit has 3 binary inputs, a1, a0 

and b, and 3 binary outputs, c, o1, o0. The 2-bit word a1a0 gives the binary representation of an 
integer, s between 0 and 3. The 3-bit word co1o0 gives the binary representation of s + b. The 
output c is called the final carry bit. 

So if s and b were both 1, then the value of a1a0 would be 01 and the value of the output co1o0 

would 010, namely, the 3-bit binary representation of 1 + 1. 

In fact, the final carry bit equals 1 only when all three binary inputs are 1, that is, when s = 3 and 
b = 1. In that case, the value of co1o0 is 100, namely, the binary representation of 3 + 1. 

This 2-bit half-adder could be described by the following formulas: 

c0 = b 

o0 = a0 XOR c0 

c1 = a0 AND c0 the carry into column 1 
o1 = a1 XOR c1 

c2 = a1 AND c1 the carry into column 2 
c = c2. 

(a) Generalize the above construction of a 2-bit half-adder to an n + 1 bit half-adder with inputs 
an, . . . , a1, a0 and b for arbitrary n ≥ 0. That is, give simple formulas for oi and ci for 0 ≤ i ≤ n +1, 
where ci is the carry into column i and c = cn+1. 

(b) Write similar definitions for the digits and carries in the sum of two n + 1-bit binary numbers 
an . . . a1a0 and bn . . . b1b0. 



3 In-Class Problems Week 2, Wed. 

Visualized as digital circuits, the above adders consist of a sequence of single-digit half-adders or 
adders strung together in series. These circuits mimic ordinary pencil-and-paper addition, where 
a carry into a column is calculated directly from the carry into the previous column, and the carries 
have to ripple across all the columns before the carry into the final column is determined. Circuits 
with this design are called “ripple-carry” adders. Ripple-carry adders are easy to understand and 
remember and require a nearly minimal number of operations. But the higher-order output bits 
and the final carry take time proportional to n to reach their final values. 

(c) How many of each of the propositional operations does your adder from part (b) use to cal­
culate the sum? 



4 

The Propositional Operations


P 
T 
F 

P Q 
T T 
T F 
F T 
F F 

P Q 
T T 
T F 
F T 
F F 

P Q 
T T 
T F 
F T 
F F 

In-Class Problems Week 2, Wed. 

NOT P 
F 
T 

P AND Q 
T 
F 
F 
F 

P OR Q 
T 
T 
T 
F 

P XOR Q 
F 
T 
T 
F 

IMPLIES Q 
T 
F 
T

T


P IFF Q 
T

F

F

T


P Q

T T 
T F 
F T 
F F 

P 
T

T

F

F


P


Q

T 
F 
T 
F 



MIT OpenCourseWare
http://ocw.mit.edu 

6.042J / 18.062J Mathematics for Computer Science 
Spring 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Problem 1
	Problem 2
	Problem 3
	Problem 4

