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sm« Well Ordering principle

Every nonempty set of
nonnegative integers
has a
least element.

Now you mention it, Yes.
Yes.
Yes. But watch out:
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Well Ordering principle

Every nonempty set of

nonnegative rationals
has a
least element.

NO!
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Well Ordering principle

Every nonempty set of
Hotregattve integers

has a
least element.

NO!
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To prove Vne N.P(n) using WOP:

* define set of counterexamples
C:i= {n eN | NOT P(n)}
« assume C is not empty. By WOP,
have minimum element m € C
* Reach a contradiction somehow ...
usually by findingc € Cwith c <m
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Thm: Get any amount n > 8¢

Prove by WOP. Suppose not.
Let m be least counterexample:

if m>n > 8, can get n¢.
Albert R Meyer
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Som>11. Nowm > m-3 > 8
m > 8: so can get m-3¢. But
m > 9 -
m > 10 | 3¢ contradiction!
— m-3¢—
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Geometric sums
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s Geometric sums e

[zl r.n+1_1 [s[s [ B ) s : L |
I+r4+r4+r4+-+r" =

l+r+rP+ri+.+r"= :
add r™ to both sides

r‘_
Proof by WOP. Let m be LHS = 14 1t 1 o 1 oo g gl g
m_1 r_m—l —pm r.m+1 —1

smallest n with =. But = for e
n=0,som >0, and RHS — i _
r—1 r—1 r—1

Lfrdrdgrd fogpnt= 21 _—
r—1 so = at m, contradicting =:

there is no counterexample.
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Problems
1-3
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