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Solutions to In-Class Problems Week 1, Fri. 

Problem 1. 
Generalize the proof from lecture (reproduced below) that 

√
2 is irrational, for example, how about 

3
√

2? Remember that an irrational number is a number that cannot be expressed as a ratio of two 
integers. 

Theorem. 
√

2 is an irrational number. 

Proof. The proof is by contradiction: assume that 
√

2 is rational, that is, 

n√
2 = , (1)

d 

where n and d are integers. Now consider the smallest such positive integer denomi­
nator, d. We will prove in a moment that the numerator, n, and the denominator, d, are 
both even. This implies that 

n/2

d/2


is a fraction equal to 
√

2 with a smaller positive integer denominator, a contradiction.


Since the assumption that 
√

2 is rational leads to this contradiction, the assumption 
must be false. That is, 

√
2 is indeed irrational. This italicized comment on the 

implication of the contradiction normally goes without saying, but since this 
is the first 6.042 exercise about proof by contradiction, we’ve said it. 

To prove that n and d have 2 as a common factor, we start by squaring both sides of (1) 
and get 2 = n2/d2, so 

2d2 = n 2 . (2) 

So 2 is a factor of n2, which is only possible if 2 is in fact a factor of n.


This means that n = 2k for some integer, k, so


n 2 = (2k)2 = 4k2 . (3) 

Combining (2) and (3) gives 2d2 = 4k2, so 

d2 = 2k2 . (4) 

So 2 is a factor of d2, which again is only possible if 2 is in fact also a factor of d, as 
claimed. � 
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nSolution. Proof. We prove that for any n > 1, 
√

2 is irrational by contradiction. 
n nAssume that 
√

2 is rational. Under this assumption, there exist integers a and b with 
√

2 = a/b, 
where b is the smallest such positive integer denominator. Now we prove that a and b are both 
even, so that 

a/2 
b/2 

nis a fraction equal to 
√

2 with a smaller positive integer denominator, a contradiction. 

n
√

2 = 
a 
b 

2 = 
an 

bn 

2bn = a n . 

The lefthand side of the last equation is even, so an is even. This implies that a is even as well (see 
below for justification). 

In particular, a = 2c for some integer c. Thus, 

2bn = (2c)n = 2n c n , 
nbn = 2n−1 c . 

Since n − 1 > 0, the righthand side of the last equation is an even number, so bn is even. But this 
implies that b must be even as well, contradicting the fact that a/b is in lowest terms. � 

Now we justify the claim that if an is even, so is a. 

There is a simple proof by contradiction: suppose to the contrary that a is odd. It’s a familiar (and 
easily verified1) fact that the product of two odd numbers is odd, from which it follows that the 

nproduct of any finite number of odd numbers is odd, so a would also be odd, contradicting the 
fact that an is even. 

More generally for any integers m, k > 0, if mk is divisible by a prime number, p, then m must be 
divisible by p. This follows from the factorization of an integer into primes (which we’ll discuss 
further in a coming lecture): the primes in the factorization of mk are precisely the primes in the 
factorization of m repeated k times, so if there is a p in the factorization of mk it must be one of k 
copies of a p in the factorization of m. � 

Problem 2. 
Here is a generalization of Problem 1 that you may not have thought of: 

Lemma 2.1. Let the coefficients of the polynomial a0 + a1x + a2x
2 + + an−1x

n−1 + xm be integers. · · · 
Then any real root of the polynomial is either integral or irrational. 

m(a) Explain why Lemma (2.1) immediately implies that 
√

k is irrational whenever k is not an 
mth power of some integer. 

1Two odd integers can be written as 2x + 1 and 2y + 1 for some integers x and y. Then their product is also odd 
because it equals 2z + 1 where z = 2(2xy + x + y) + 1. 
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Solution. Saying that an integer, k, is not the nth power of an integer, is equivalent to saying that 
the equation xM = k has no integer solutions. Another way to say this is that the polynomial 

m mx − k has no integer root. Lemma (2.1) therefore implies that any root of x − k is irrational. But 
m
√

k is, by definition, a root of this polynomial, so it is irrational. � 

(b) Collaborate with your tablemates to write a clear, textbook quality proof of Lemma 2.1 on 
your whiteboard. (Besides clarity and correctness, textbook quality requires good English with 
proper punctuation. When a real textbook writer does this, it usually takes multiple revisions; 
if you’re satisfied with your first draft, you’re probably misjudging.) You may find it helpful to 
appeal to the following: 
Lemma 2.2. If a prime, p, is a factor of some power of an integer, then it is a factor of that integer. 

You may assume Lemma 2.2 without writing down its proof, but see if you can explain why it is 
true. 

Solution. Proof. Let r be a real root of the polynomial, so that 

a0 + a1r + a2r 2 + + am−1r m−1 + r m = 0.· · · 

There are three cases: either r is an integer, or r is irrational, or r = s/t for integers s and t which 
have no common factors and such that t > 1. We want to eliminate the last case, so assume for the 
sake of contradiction that it held for some r. 

Substituting s/t for r and multiplying both sides of the above equation by tm yields: 

a0t
m + a1st

m−1 + a2s 2tm−2 + + am−1s m−1t + s m = 0, (5)· · · 
a0t

m + a1st
m−1 + a2s 2tm−2 + · · · + s m−1t = −s m . (6) 

Now since t > 1, it must have a prime factor, p. The prime, p, therefore divides each term of the 
lefthand side of equation (6), so p also divides the righthand side, −sm. This means that p divides 
sm, so by Lemma 2.2, p is also a factor of s. So p is a common factor of s and t, contradicting the 
fact that s and t have no common factors. � 

Lemma 2.2 is a simple consequence of the Fundamental Theorem of Arithmetic which says that every 
integer > 1 factors into a product of primes that is unique except for the order in which the primes 
are multiplied. 

For example, here are some ways to express 140 as a product of primes: 

140 = 2 2 5 7 = 2 5 7 2 = 7 5 2 2 = · · · · · · · · · · · · . 

By the Fundamental Theorem, every such product will have exactly two occurrences of 2 and one 
each of 5 and 7. Next, we can obviously get a product of primes equal to, say, the third power of 
140 by taking a product that equals 140 and repeating it three times. For example, 

(140)3 = 2 2 5 7 2 2 7 5 2 2 7 5.· · · · · · · · · · · 

The Fundamental Theorem now says that every prime product equal to the third power of 60 must 
have the same primes as this repeated product, namely, six occurrences of 2 and three occurrences 
each of 5 and 7. In particular, the only primes that are factors of (140)3 are the primes 2, 5 and 7 
that are factors of 140. This reasoning applies equally well with any other integer greater than 1 
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min place of 140 and any power greater than 0 in place of 3, proving that if p is a prime factor of s , 
then p must have been a factor of s.


The Fundamental Theorem of Arithmetic is also know as the Unique Prime Factorization Theorem.

It is one of those familiar mathematical facts that is not exactly obvious. We’ll work out a proof of

the Fundamental Theorem in a later chapter. �


Problem 3. 
If we raise an irrational number to an irrational power, can the result be rational? Show that it can 

by considering 
√

2
√

2 
and arguing by cases. 

Solution. We want to find irrational numbers a, b such that ab is rational. We argue by cases. 

Case 1: [
√

2
√

2 
is rational]. Let a = b = 

√
2. a and b are irrational since 

√
2 is irrational as we know. 

Also, ab is rational by case hypothesis. So we have found the required a and b in this case. 

Case 2: [
√

2
√

2 
is irrational]. Let a = 

√
2
√

2 
and b = 

√
2. Then a is irrational by case hypothesis, we 

know b is irrational, and 

b a = 

� √
2 
√

2 
�√2 

= 
√

2 
√

2·
√

2 
= 
√

2
2 

= 2, 

which is rational. So we have found the required a and b in this case also. 

So in any case, there will be irrational a, b such that ab is rational. Note that we have no clue about 
which case is true, but that didn’t matter. 

Problem 4. 
Here is a different proof that 

√
2 is irrational, taken from the American Mathematical Monthly, 

v.116, #1, Jan. 2009, p.69: 

Proof. Suppose for the sake of contradiction that 
√

2 is rational, and choose the least integer, q > 0, 
such that 

�√
2 − 1 

� 
q is a nonnegative integer. Let q� ::= 

�√
2 − 1 

� 
q. Clearly 0 < q� < q. But an 

easy computation shows that 
�√

2 − 1 
� 
q� is a nonnegative integer, contradicting the minimality of 

q. � 

(a) This proof was written for an audience of college teachers, and is a little more concise than 
desirable at this point in 6.042. Write out a more complete version which includes an explanation 
of each step. 

Solution. The points that need justification are: �√
2 − 1 

� 
1. Why is there a positive integer, q, such that q is a nonnegative integer? Answer: 

Since 
√

2 is rational, so is 
√

2 − 1. So 
√

2 − 1 can be expressed as an integer quotient with 
positive denominator; now just let q be that denominator. 

2. Why is there such a least positive integer, q? Answer: As long as there is one such positive 
integer, there has to be a least one. This obvious fact is known as the Well Ordering Principle. 
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3. Why is 0 < q� < q? Answer: We know that 1 < 
√

2 < 2, so 0 < 
√

2 − 1 < 1. Therefore, 
0 < 

�√
2 − 1 

� 
r < r for any real number r > 0. 

4. Why is (
√

2−1)q� a nonnegative integer? Answer: It’s actually positive, because it is a product 
of positive numbers. It’s integer because � � � �2 �� � �√

2 − 1 q� = 
√

2 − 1 q = 2q − 2q
√

2 + q = q − 2 
√

2 − 1 q· 

and the last term is of the form �integer − 2 [integer]�.· 

(b) Now that you have justified the steps in this proof, do you have a preference for one of these 
proofs over the other? Why? Discuss these questions with your teammates for a few minutes and 
summarize your team’s answers on your whiteboard. 

Solution. Both proofs seem about equally easy to understand. The previous problems shows that 
the first proof generalizes pretty directly from square roots to kth roots, which doesn’t seems as 
clear for the this second proof. On the other hand, the first proof requires appeal to Unique Prime 
Factorization, while the second just uses simple algebra. � 
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