Mini-Quiz Apr. 7

Your name:_

- This quiz is **closed book**. Total time is 25 minutes.
- Write your solutions in the space provided. If you need more space, write on the back of the sheet containing the problem. Please keep your entire answer to a problem on that problem's page.
- GOOD LUCK!

DO NOT WRITE BELOW THIS LINE

Problem	Points	Grade	Grader
1	8		
2	6		
3	6		
Total	20		

Creative Commons 2010, Prof. Albert R. Meyer.

2 Your name:_____

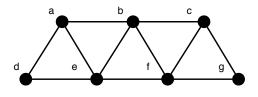
Problem 1 (8 points). (a) Use the Pulverizer to find gcd(84, 108)

(b) Find integers x, y with $0 \le y < 84$ such that

 $x \cdot 84 + y \cdot 108 = \gcd(84, 108).$

(c) Find the multiplicative inverse of 84 modulo 108 in the range $\{1,...,107\}$. If no such inverse can be found, briefly explain why not.

Problem 2 (6 points). (a) For the planar embedding picture below, list all the discrete faces (simple cycles that define the region borders).



(b) Provide a drawing of a different planar embedding of the graph above. Also list all the faces of the embedding.

Problem 3 (6 points).

Definition. Consider a new recursive definition, MB₀, of the same set of "matching" brackets strings as MB (definition of MB is provided in the Appendix):

- **Base case:** $\lambda \in MB_0$.
- Constructor cases:
 - (i) If s is in MB₀, then [s] is in MB₀.
 - (ii) If $s, t \in MB_0$, $s \neq \lambda$, and $t \neq \lambda$, then st is in MB₀.

(a) Suppose structural induction was being used to prove that $MB_0 \subseteq MB$. Circle the one predicate below that would fit the format for a structural induction hypothesis in such a proof.

- $P_0(n) ::= |s| \le n$ implies $s \in MB$.
- $P_1(n) ::= |s| \le n \text{ implies } s \in MB_0.$
- $P_2(s) ::= s \in MB.$
- $P_3(s) ::= s \in MB_0$.
- $P_4(s) ::= (s \in \text{MB implies } s \in \text{MB}_0).$

(b) The recursive definition MB_0 is *ambiguous*. Verify this by giving two different derivations for the string "[][][]" according to MB_0 .

Mini-Quiz Apr. 7

Your name:_____

Appendix

Matched Brackets

Recursively define the set, MB, of strings of "matching" brackets as follows:

- **Base case:** $\lambda \in MB$.
- **Constructor case:** If $s, t \in MB$, then $[s]t \in MB$.

6.042J / 18.062J Mathematics for Computer Science Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.